Documentation Verification Report

IsClosedRestrict

📁 Source: Mathlib/Topology/IsClosedRestrict.lean

Statistics

MetricCount
DefinitionspreimageImageRestrict, reorderRestrictProd
2
TheoremsisClosed_image_eval, isClosed_image_restrict, continuous_reorderRestrictProd, image_snd_preimageImageRestrict, reorderRestrictProd_mem_preimage_image_restrict, reorderRestrictProd_of_compl, reorderRestrictProd_of_mem, reorderRestrictProd_restrict_compl, restrict_compl_reorderRestrictProd, isClosedMap_restrict_of_compactSpace
10
Total12

Homeomorph

Definitions

NameCategoryTheorems
preimageImageRestrict 📖CompOp
1 mathmath: Topology.image_snd_preimageImageRestrict

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
isClosed_image_eval 📖mathematicalIsCompact
Pi.topologicalSpace
IsClosed
Set.image
IsCompact.isClosed_image_restrict
Set.image_comp
Homeomorph.isClosed_image

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
isClosed_image_restrict 📖mathematicalIsCompact
Pi.topologicalSpace
IsClosed
Set.Elem
Set
Set.instMembership
Set.image
Set.restrict
Topology.image_snd_preimageImageRestrict
isCompact_iff_compactSpace
image
Pi.continuous_restrict
isClosedMap_snd_of_compactSpace
Homeomorph.isClosed_image
IsClosed.preimage
continuous_subtype_val

Topology

Definitions

NameCategoryTheorems
reorderRestrictProd 📖CompOp
6 mathmath: reorderRestrictProd_restrict_compl, reorderRestrictProd_mem_preimage_image_restrict, reorderRestrictProd_of_mem, continuous_reorderRestrictProd, reorderRestrictProd_of_compl, restrict_compl_reorderRestrictProd

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_reorderRestrictProd 📖mathematicalContinuous
Set.Elem
Set.image
Set.restrict
Compl.compl
Set
Set.instCompl
instTopologicalSpaceProd
instTopologicalSpaceSubtype
Set.instMembership
Pi.topologicalSpace
reorderRestrictProd
continuous_pi
Continuous.comp'
continuous_apply
Continuous.snd
continuous_id'
Continuous.comp
continuous_subtype_val
continuous_fst
image_snd_preimageImageRestrict 📖mathematicalSet.image
Set.Elem
Set.restrict
Compl.compl
Set
Set.instCompl
Set.preimage
DFunLike.coe
Homeomorph
instTopologicalSpaceSubtype
Set.instMembership
Pi.topologicalSpace
instTopologicalSpaceProd
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.preimageImageRestrict
Set.ext
Set.image_congr
Set.mem_image_of_mem
reorderRestrictProd_mem_preimage_image_restrict 📖mathematicalSet
Set.instMembership
Set.preimage
Set.restrict
Compl.compl
Set.instCompl
Set.image
reorderRestrictProd
restrict_compl_reorderRestrictProd
reorderRestrictProd_of_compl 📖mathematicalreorderRestrictProd
Set
Set.instMembership
Compl.compl
Set.instCompl
Set.image
Set.restrict
Set.Elem
Subtype.prop
reorderRestrictProd_of_mem 📖mathematicalreorderRestrictProd
Set
Set.instMembership
Set.Elem
Set.image
Set.restrict
Compl.compl
Set.instCompl
Subtype.prop
reorderRestrictProd_restrict_compl 📖mathematicalreorderRestrictProd
Set.Elem
Set.image
Set.restrict
Compl.compl
Set
Set.instCompl
Set.instMembership
Set.preimage
restrict_compl_reorderRestrictProd 📖mathematicalSet.restrict
Compl.compl
Set
Set.instCompl
reorderRestrictProd
Set.instMembership
Set.image
Set.Elem
reorderRestrictProd_of_compl

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isClosedMap_restrict_of_compactSpace 📖mathematicalCompactSpaceIsClosedMap
Pi.topologicalSpace
Set.Elem
Set
Set.instMembership
Set.restrict
Set.image_comp
isClosedMap_fst_of_compactSpace
Pi.compactSpace
Homeomorph.isClosed_image

---

← Back to Index