Documentation Verification Report

IsLocalHomeomorph

📁 Source: Mathlib/Topology/IsLocalHomeomorph.lean

Statistics

MetricCount
DefinitionsIsLocalHomeomorph, toHomeomorphOfBijective, toHomeomorph_of_bijective, IsLocalHomeomorphOn
4
TheoremsisLocalHomeomorph, isLocalHomeomorph, comap_discreteTopology, comp, continuous, discreteTopology_iff_of_surjective, discreteTopology_range_iff, isLocalHomeomorphOn, isLocallyInjective, isOpenEmbedding_of_comp, isOpenEmbedding_of_injective, isOpenMap, isTopologicalBasis, map_nhds_eq, mk, of_comp, isLocalHomeomorphOn, comp, continuousAt, continuousOn, discreteTopology_image_iff, discreteTopology_of_image, isDiscrete_image_iff, isDiscrete_of_image, map_nhds_eq, mk, mono, of_comp_left, of_comp_right, isLocalHomeomorph, isLocalHomeomorphOn_iff_isOpenEmbedding_restrict, isLocalHomeomorph_iff_isLocalHomeomorphOn_univ, isLocalHomeomorph_iff_isOpenEmbedding_restrict
33
Total37

Homeomorph

Theorems

NameKindAssumesProvesValidatesDepends On
isLocalHomeomorph 📖mathematicalIsLocalHomeomorph
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike

IsLocalHomeomorph

Definitions

NameCategoryTheorems
toHomeomorphOfBijective 📖CompOp
toHomeomorph_of_bijective 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
comap_discreteTopology 📖mathematicalIsLocalHomeomorphDiscreteTopologyHomeomorph.discreteTopology_iff
IsLocalHomeomorphOn.discreteTopology_of_image
isLocalHomeomorphOn
instDiscreteTopologySubtype
comp 📖IsLocalHomeomorphisLocalHomeomorph_iff_isLocalHomeomorphOn_univ
IsLocalHomeomorphOn.comp
isLocalHomeomorphOn
Set.mapsTo_univ
continuous 📖mathematicalIsLocalHomeomorphContinuouscontinuousOn_univ
IsLocalHomeomorphOn.continuousOn
isLocalHomeomorphOn
discreteTopology_iff_of_surjective 📖mathematicalIsLocalHomeomorphDiscreteTopologyHomeomorph.discreteTopology_iff
Function.Surjective.range_eq
discreteTopology_range_iff
discreteTopology_range_iff 📖mathematicalIsLocalHomeomorphDiscreteTopology
Set.Elem
Set.range
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.image_univ
Homeomorph.discreteTopology_iff
IsLocalHomeomorphOn.discreteTopology_image_iff
isLocalHomeomorphOn
isOpen_univ
isLocalHomeomorphOn 📖mathematicalIsLocalHomeomorphIsLocalHomeomorphOn
isLocallyInjective 📖mathematicalIsLocalHomeomorphIsLocallyInjectiveOpenPartialHomeomorph.open_source
OpenPartialHomeomorph.injOn
isOpenEmbedding_of_comp 📖IsLocalHomeomorph
Topology.IsOpenEmbedding
Continuous
isOpenEmbedding_of_injective
of_comp
Topology.IsOpenEmbedding.isLocalHomeomorph
Function.Injective.of_comp
Topology.IsEmbedding.injective
Topology.IsOpenEmbedding.toIsEmbedding
isOpenEmbedding_of_injective 📖mathematicalIsLocalHomeomorphTopology.IsOpenEmbeddingTopology.IsOpenEmbedding.of_continuous_injective_isOpenMap
continuous
isOpenMap
isOpenMap 📖mathematicalIsLocalHomeomorphIsOpenMapIsOpenMap.of_nhds_le
ge_of_eq
map_nhds_eq
isTopologicalBasis 📖mathematicalIsLocalHomeomorphTopologicalSpace.IsTopologicalBasis
setOf
Set
IsOpen
ContinuousMap
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
DFunLike.coe
ContinuousMap.instFunLike
Set.range
TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
Topology.IsOpenEmbedding.isOpen_range
isOpenEmbedding_of_comp
Topology.IsEmbedding.subtypeVal
Subtype.range_val
ContinuousMap.continuous
OpenPartialHomeomorph.isOpen_inter_preimage
continuousOn_iff_continuous_restrict
ContinuousOn.mono
OpenPartialHomeomorph.continuousOn_invFun
OpenPartialHomeomorph.right_inv
Set.range_restrict
OpenPartialHomeomorph.symm_image_target_inter_eq
Set.preimage_inter
Set.inter_assoc
Set.inter_eq_self_of_subset_left
OpenPartialHomeomorph.source_preimage_target
OpenPartialHomeomorph.source_inter_preimage_inv_preimage
map_nhds_eq 📖mathematicalIsLocalHomeomorphFilter.map
nhds
IsLocalHomeomorphOn.map_nhds_eq
isLocalHomeomorphOn
Set.mem_univ
mk 📖mathematicalSet
Set.instMembership
PartialEquiv.source
OpenPartialHomeomorph.toPartialEquiv
Set.EqOn
OpenPartialHomeomorph.toFun'
IsLocalHomeomorphisLocalHomeomorph_iff_isLocalHomeomorphOn_univ
of_comp 📖IsLocalHomeomorph
Continuous
isLocalHomeomorph_iff_isLocalHomeomorphOn_univ
IsLocalHomeomorphOn.of_comp_left
isLocalHomeomorphOn
Continuous.continuousAt

IsLocalHomeomorph.Homeomorph

Theorems

NameKindAssumesProvesValidatesDepends On
isLocalHomeomorph 📖mathematicalIsLocalHomeomorph
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike

IsLocalHomeomorphOn

Theorems

NameKindAssumesProvesValidatesDepends On
comp 📖IsLocalHomeomorphOn
Set.MapsTo
continuousAt 📖mathematicalIsLocalHomeomorphOn
Set
Set.instMembership
ContinuousAtEq.le
map_nhds_eq
continuousOn 📖mathematicalIsLocalHomeomorphOnContinuousOncontinuousOn_of_forall_continuousAt
continuousAt
discreteTopology_image_iff 📖mathematicalIsLocalHomeomorphOn
IsOpen
DiscreteTopology
Set.Elem
Set.image
instTopologicalSpaceSubtype
Set
Set.instMembership
discreteTopology_of_image
OpenPartialHomeomorph.isOpen_image_of_subset_source
Set.image_singleton
IsOpen.isOpenMap_subtype_val
Set.singleton_subset_iff
Set.ext
discreteTopology_of_image 📖mathematicalIsLocalHomeomorphOnDiscreteTopology
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
discreteTopology_iff_isOpen_singleton
isOpen_discrete
ContinuousOn.isOpen_inter_preimage
OpenPartialHomeomorph.continuousOn_toFun
OpenPartialHomeomorph.open_source
subset_antisymm
Set.instAntisymmSubset
OpenPartialHomeomorph.injOn
Set.subset_singleton_iff
Eq.subset
Set.instReflSubset
Eq.superset
isDiscrete_image_iff 📖mathematicalIsLocalHomeomorphOn
IsOpen
IsDiscrete
Set.image
isDiscrete_of_image
discreteTopology_image_iff
IsDiscrete.to_subtype
isDiscrete_of_image 📖IsLocalHomeomorphOn
IsDiscrete
Set.image
IsDiscrete.to_subtype
discreteTopology_of_image
map_nhds_eq 📖mathematicalIsLocalHomeomorphOn
Set
Set.instMembership
Filter.map
nhds
OpenPartialHomeomorph.map_nhds_eq
mk 📖mathematicalSet
Set.instMembership
PartialEquiv.source
OpenPartialHomeomorph.toPartialEquiv
Set.EqOn
OpenPartialHomeomorph.toFun'
IsLocalHomeomorphOnPartialEquiv.map_source'
PartialEquiv.map_target'
PartialEquiv.left_inv'
PartialEquiv.right_inv'
OpenPartialHomeomorph.open_source
OpenPartialHomeomorph.open_target
continuousOn_congr
OpenPartialHomeomorph.continuousOn_toFun
OpenPartialHomeomorph.continuousOn_invFun
mono 📖IsLocalHomeomorphOn
Set
Set.instHasSubset
of_comp_left 📖IsLocalHomeomorphOn
Set.image
ContinuousAt
mem_interior_iff_mem_nhds
ContinuousAt.preimage_mem_nhds
IsOpen.mem_nhds
OpenPartialHomeomorph.open_source
OpenPartialHomeomorph.map_source
interior_subset
OpenPartialHomeomorph.eq_symm_apply
of_comp_right 📖mathematicalIsLocalHomeomorphOnSet.imageOpenPartialHomeomorph.map_source
OpenPartialHomeomorph.left_inv
OpenPartialHomeomorph.right_inv

IsLocalHomeomorphOn.OpenPartialHomeomorph

Theorems

NameKindAssumesProvesValidatesDepends On
isLocalHomeomorphOn 📖mathematicalIsLocalHomeomorphOn
OpenPartialHomeomorph.toFun'
PartialEquiv.source
OpenPartialHomeomorph.toPartialEquiv

Topology.IsOpenEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
isLocalHomeomorph 📖mathematicalTopology.IsOpenEmbeddingIsLocalHomeomorphisLocalHomeomorph_iff_isOpenEmbedding_restrict
Filter.univ_mem
comp
Homeomorph.isOpenEmbedding

(root)

Definitions

NameCategoryTheorems
IsLocalHomeomorph 📖MathDef
10 mathmath: Topology.IsOpenEmbedding.isLocalHomeomorph, isLocalHomeomorph_iff_isLocalHomeomorphOn_univ, IsLocalHomeomorph.Homeomorph.isLocalHomeomorph, IsLocalDiffeomorph.isLocalHomeomorph, AddCircle.isLocalHomeomorph_coe, Homeomorph.isLocalHomeomorph, isLocalHomeomorph_iff_isOpenEmbedding_restrict, isLocalHomeomorph_circleExp, IsCoveringMap.isLocalHomeomorph, IsLocalHomeomorph.mk
IsLocalHomeomorphOn 📖MathDef
7 mathmath: IsLocalHomeomorphOn.mk, isLocalHomeomorph_iff_isLocalHomeomorphOn_univ, IsLocalHomeomorphOn.OpenPartialHomeomorph.isLocalHomeomorphOn, IsLocalHomeomorph.isLocalHomeomorphOn, isLocalHomeomorphOn_iff_isOpenEmbedding_restrict, IsCoveringMapOn.isLocalHomeomorphOn, IsLocalDiffeomorphOn.isLocalHomeomorphOn

Theorems

NameKindAssumesProvesValidatesDepends On
isLocalHomeomorphOn_iff_isOpenEmbedding_restrict 📖mathematicalIsLocalHomeomorphOn
Set
Filter
Filter.instMembership
nhds
Topology.IsOpenEmbedding
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
Set.restrict
IsOpen.mem_nhds
OpenPartialHomeomorph.open_source
OpenPartialHomeomorph.isOpenEmbedding_restrict
Topology.IsOpenEmbedding.comp
interior_subset
Topology.IsEmbedding.inclusion
Set.range_inclusion
isOpen_induced
isOpen_interior
Topology.isOpenEmbedding_iff_continuous_injective_isOpenMap
Set.injOn_iff_injective
continuousOn_iff_continuous_restrict
mem_interior_iff_mem_nhds
isLocalHomeomorph_iff_isLocalHomeomorphOn_univ 📖mathematicalIsLocalHomeomorph
IsLocalHomeomorphOn
Set.univ
isLocalHomeomorph_iff_isOpenEmbedding_restrict 📖mathematicalIsLocalHomeomorph
Set
Filter
Filter.instMembership
nhds
Topology.IsOpenEmbedding
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
Set.restrict
Set.mem_univ

---

← Back to Index