Documentation Verification Report

LocallyClosed

πŸ“ Source: Mathlib/Topology/LocallyClosed.lean

Statistics

MetricCount
Definitions0
Theoremspreimage_coborder_subset, coborder_eq, image, inter, isOpen_coborder, isOpen_preimage_val_closure, preimage, coborder_eq, coborder_preimage_subset, isLocallyClosed_iff, isLocallyClosed_iff, coborder_preimage, closure_inter_coborder, coborder_eq_compl_frontier_iff, coborder_eq_union_closure_compl, coborder_eq_union_frontier_compl, coborder_eq_univ_iff, coborder_inter_closure, coborder_preimage, dense_coborder, isClosed_preimage_val_coborder, isLocallyClosed_iff_isOpen_coborder, isLocallyClosed_tfae, subset_coborder
24
Total24

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
preimage_coborder_subset πŸ“–mathematicalContinuousSet
Set.instHasSubset
Set.preimage
coborder
β€”coborder.eq_1
Set.preimage_compl
Set.preimage_diff
Set.compl_subset_compl
Set.diff_subset_diff_left
closure_preimage_subset

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
coborder_eq πŸ“–mathematicalβ€”coborder
Set.univ
β€”coborder_eq_univ_iff

IsLocallyClosed

Theorems

NameKindAssumesProvesValidatesDepends On
image πŸ“–mathematicalIsLocallyClosed
Topology.IsInducing
Set.range
Set.imageβ€”Topology.IsInducing.isLocallyClosed_iff
Set.image_preimage_eq_inter_range
inter
inter πŸ“–mathematicalIsLocallyClosedSet
Set.instInter
β€”IsOpen.inter
IsClosed.inter
Set.inter_inter_inter_comm
isOpen_coborder πŸ“–mathematicalIsLocallyClosedIsOpen
coborder
β€”isLocallyClosed_iff_isOpen_coborder
isOpen_preimage_val_closure πŸ“–mathematicalIsLocallyClosedIsOpen
Set.Elem
closure
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.preimage
β€”List.TFAE.out
isLocallyClosed_tfae
preimage πŸ“–mathematicalIsLocallyClosed
Continuous
Set.preimageβ€”IsOpen.preimage
IsClosed.preimage
Set.preimage_inter

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
coborder_eq πŸ“–mathematicalIsOpencoborder
Compl.compl
Set
Set.instCompl
frontier
β€”coborder_eq_compl_frontier_iff

IsOpenMap

Theorems

NameKindAssumesProvesValidatesDepends On
coborder_preimage_subset πŸ“–mathematicalIsOpenMapSet
Set.instHasSubset
coborder
Set.preimage
β€”coborder.eq_1
Set.preimage_compl
Set.preimage_diff
Set.compl_subset_compl
Set.diff_subset_diff_left
preimage_closure_subset_closure_preimage

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
isLocallyClosed_iff πŸ“–mathematicalTopology.IsEmbeddingIsLocallyClosed
Set
Set.instInter
Set.range
Set.image
β€”Topology.IsInducing.isLocallyClosed_iff
isInducing
Set.image_injective
injective
Set.image_preimage_eq_inter_range

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
isLocallyClosed_iff πŸ“–mathematicalTopology.IsInducingIsLocallyClosed
Set.preimage
β€”isOpen_iff
isClosed_iff

Topology.IsOpenEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
coborder_preimage πŸ“–mathematicalTopology.IsOpenEmbeddingcoborder
Set.preimage
β€”coborder_preimage
isOpenMap
continuous

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
closure_inter_coborder πŸ“–mathematicalβ€”Set
Set.instInter
closure
coborder
β€”Set.inter_comm
coborder_inter_closure
coborder_eq_compl_frontier_iff πŸ“–mathematicalβ€”coborder
Compl.compl
Set
Set.instCompl
frontier
IsOpen
β€”coborder_eq_union_frontier_compl
coborder_eq_union_closure_compl πŸ“–mathematicalβ€”coborder
Set
Set.instUnion
Compl.compl
Set.instCompl
closure
β€”coborder.eq_1
compl_eq_comm
Set.compl_union
compl_compl
Set.inter_comm
coborder_eq_union_frontier_compl πŸ“–mathematicalβ€”coborder
Set
Set.instUnion
Compl.compl
Set.instCompl
frontier
β€”coborder.eq_1
compl_eq_comm
Set.compl_union
compl_compl
Set.diff_eq_compl_inter
Set.union_diff_right
Set.union_comm
closure_eq_self_union_frontier
coborder_eq_univ_iff πŸ“–mathematicalβ€”coborder
Set.univ
IsClosed
β€”β€”
coborder_inter_closure πŸ“–mathematicalβ€”Set
Set.instInter
coborder
closure
β€”coborder.eq_1
Set.diff_eq_compl_inter
Set.diff_diff_right_self
Set.inter_eq_right
subset_closure
coborder_preimage πŸ“–mathematicalIsOpenMap
Continuous
coborder
Set.preimage
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
IsOpenMap.coborder_preimage_subset
Continuous.preimage_coborder_subset
dense_coborder πŸ“–mathematicalβ€”Dense
coborder
β€”dense_iff_closure_eq
coborder_eq_union_closure_compl
closure_union
Set.univ_subset_iff
subset_trans
Set.instIsTransSubset
Set.union_compl_self
Set.instReflSubset
Set.union_subset_union_right
subset_closure
isClosed_preimage_val_coborder πŸ“–mathematicalβ€”IsClosed
Set.Elem
coborder
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.preimage
β€”isClosed_preimage_val
Set.inter_eq_right
subset_coborder
coborder_inter_closure
subset_refl
Set.instReflSubset
isLocallyClosed_iff_isOpen_coborder πŸ“–mathematicalβ€”IsLocallyClosed
IsOpen
coborder
β€”List.TFAE.out
isLocallyClosed_tfae
isLocallyClosed_tfae πŸ“–mathematicalβ€”List.TFAE
IsLocallyClosed
IsOpen
coborder
Set.Elem
closure
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.preimage
β€”IsClosed.closure_eq
Set.compl_subset_iff_union
Set.compl_subset_compl
HasSubset.Subset.trans
Set.instIsTransSubset
frontier_subset_closure
closure_mono
Set.inter_subset_right
coborder_eq_union_frontier_compl
Set.inter_union_distrib_right
Set.inter_univ
IsOpen.union
IsClosed.isOpen_compl
isClosed_frontier
IsOpen.mem_nhds
subset_coborder
isClosed_preimage_val_coborder
mem_nhds_iff
Set.subset_inter
Set.inter_subset_left
IsOpen.inter_closure
Set.inter_subset_inter
subset_rfl
Set.instReflSubset
isClosed_preimage_val
isOpen_iUnion
Set.ext
Set.subset_iUnionβ‚‚
Subtype.image_preimage_coe
subset_closure
IsLocallyClosed.image
IsOpen.isLocallyClosed
Topology.IsInducing.subtypeVal
Subtype.range_coe_subtype
IsClosed.isLocallyClosed
isClosed_closure
List.tfae_of_cycle
subset_coborder πŸ“–mathematicalβ€”Set
Set.instHasSubset
coborder
β€”coborder.eq_1
Set.subset_compl_iff_disjoint_right
disjoint_sdiff_self_right

---

← Back to Index