Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/LocallyConstant/Basic.lean

Statistics

MetricCount
DefinitionsIsLocallyConstant, apply, comap, congrLeft, congrRight, const, desc, equivClopens, eval, flip, indicator, instCoeContinuousMap, instFunLike, instInhabited, map, mulIndicator, ofIsClopen, piecewise, piecewise', toContinuousMap, toFun, unflip
22
Theoremsadd, apply_eq_of_isPreconnected, apply_eq_of_preconnectedSpace, comp, comp_continuous, compβ‚‚, const, continuous, desc, div, eq_const, eventually_eq, exists_eq_const, exists_open, iff_continuous, iff_eventually_eq, iff_exists_open, iff_isOpen_fiber, iff_isOpen_fiber_apply, iff_is_const, inv, isClopen_fiber, isClosed_fiber, isOpen_fiber, mul, neg, of_constant, of_constant_on_connected_clopens, of_constant_on_connected_components, of_constant_on_preconnected_clopens, of_discrete, one, prodMk, range_finite, sub, zero, apply_eq_of_isPreconnected, apply_eq_of_preconnectedSpace, coe_comap, coe_comap_apply, coe_const, coe_continuousMap, coe_desc, coe_inj, coe_injective, coe_mk, comap_comap, comap_comp, comap_const, comap_id, comap_injective, congrLeft_apply, congrLeft_symm_apply, congrRight_apply, congrRight_symm_apply, congr_arg, congr_fun, continuous, eq_const, eval_apply, exists_eq_const, ext, ext_iff, flip_unflip, indicator_apply, indicator_apply_eq_if, indicator_of_mem, indicator_of_notMem, isLocallyConstant, locallyConstant_eq_of_fiber_zero_eq, map_apply, map_comp, map_id, mulIndicator_apply, mulIndicator_apply_eq_if, mulIndicator_of_mem, mulIndicator_of_notMem, ofIsClopen_fiber_one, ofIsClopen_fiber_zero, piecewise'_apply_left, piecewise'_apply_right, piecewise_apply_left, piecewise_apply_right, range_finite, toContinuousMap_injective, toFun_eq_coe, unflip_flip
87
Total109

IsLocallyConstant

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalIsLocallyConstantPi.instAddβ€”compβ‚‚
apply_eq_of_isPreconnected πŸ“–β€”IsLocallyConstant
IsPreconnected
Set
Set.instMembership
β€”β€”Set.inter_compl_self
Set.inter_empty
Set.union_compl_self
apply_eq_of_preconnectedSpace πŸ“–β€”IsLocallyConstantβ€”β€”apply_eq_of_isPreconnected
PreconnectedSpace.isPreconnected_univ
comp πŸ“–β€”IsLocallyConstantβ€”β€”Set.preimage_comp
comp_continuous πŸ“–β€”IsLocallyConstant
Continuous
β€”β€”Set.preimage_comp
Continuous.isOpen_preimage
compβ‚‚ πŸ“–β€”IsLocallyConstantβ€”β€”comp
prodMk
const πŸ“–mathematicalβ€”IsLocallyConstantβ€”of_constant
continuous πŸ“–mathematicalIsLocallyConstantContinuousβ€”β€”
desc πŸ“–β€”IsLocallyConstantβ€”β€”Set.preimage_image_eq
Set.preimage_preimage
div πŸ“–mathematicalIsLocallyConstantPi.instDivβ€”compβ‚‚
eq_const πŸ“–β€”IsLocallyConstantβ€”β€”apply_eq_of_preconnectedSpace
eventually_eq πŸ“–mathematicalIsLocallyConstantFilter.Eventually
nhds
β€”iff_eventually_eq
exists_eq_const πŸ“–β€”IsLocallyConstantβ€”β€”isEmpty_or_nonempty
eq_const
exists_open πŸ“–mathematicalIsLocallyConstantIsOpen
Set
Set.instMembership
β€”iff_exists_open
iff_continuous πŸ“–mathematicalβ€”IsLocallyConstant
Continuous
β€”continuous
Continuous.isOpen_preimage
isOpen_discrete
iff_eventually_eq πŸ“–mathematicalβ€”IsLocallyConstant
Filter.Eventually
nhds
β€”List.TFAE.out
tfae
iff_exists_open πŸ“–mathematicalβ€”IsLocallyConstant
IsOpen
Set
Set.instMembership
β€”List.TFAE.out
tfae
iff_isOpen_fiber πŸ“–mathematicalβ€”IsLocallyConstant
IsOpen
Set.preimage
Set
Set.instSingletonSet
β€”List.TFAE.out
tfae
iff_isOpen_fiber_apply πŸ“–mathematicalβ€”IsLocallyConstant
IsOpen
Set.preimage
Set
Set.instSingletonSet
β€”List.TFAE.out
tfae
iff_is_const πŸ“–mathematicalβ€”IsLocallyConstantβ€”apply_eq_of_isPreconnected
PreconnectedSpace.isPreconnected_univ
of_constant
inv πŸ“–mathematicalIsLocallyConstantPi.instInvβ€”comp
isClopen_fiber πŸ“–mathematicalIsLocallyConstantIsClopen
setOf
β€”isClosed_fiber
isOpen_fiber
isClosed_fiber πŸ“–mathematicalIsLocallyConstantIsClosed
setOf
β€”β€”
isOpen_fiber πŸ“–mathematicalIsLocallyConstantIsOpen
setOf
β€”β€”
mul πŸ“–mathematicalIsLocallyConstantPi.instMulβ€”compβ‚‚
neg πŸ“–mathematicalIsLocallyConstantPi.instNegβ€”comp
of_constant πŸ“–mathematicalβ€”IsLocallyConstantβ€”iff_eventually_eq
Filter.Eventually.of_forall
of_constant_on_connected_clopens πŸ“–mathematicalβ€”IsLocallyConstantβ€”of_constant_on_connected_components
isConnected_connectedComponent
isClopen_connectedComponent
mem_connectedComponent
of_constant_on_connected_components πŸ“–mathematicalβ€”IsLocallyConstantβ€”iff_exists_open
isOpen_connectedComponent
mem_connectedComponent
of_constant_on_preconnected_clopens πŸ“–mathematicalβ€”IsLocallyConstantβ€”of_constant_on_connected_clopens
IsConnected.isPreconnected
of_discrete πŸ“–mathematicalβ€”IsLocallyConstantβ€”isOpen_discrete
one πŸ“–mathematicalβ€”IsLocallyConstant
Pi.instOne
β€”const
prodMk πŸ“–β€”IsLocallyConstantβ€”β€”iff_eventually_eq
Filter.Eventually.mp
eventually_eq
Filter.Eventually.mono
range_finite πŸ“–mathematicalIsLocallyConstantSet.Finite
Set.range
β€”IsCompact.finite_of_discrete
discreteTopology_bot
isCompact_range
continuous
sub πŸ“–mathematicalIsLocallyConstantPi.instSubβ€”compβ‚‚
zero πŸ“–mathematicalβ€”IsLocallyConstant
Pi.instZero
β€”const

LocallyConstant

Definitions

NameCategoryTheorems
comap πŸ“–CompOp
23 mathmath: comapMonoidHom_apply, coe_comap_apply, Profinite.exists_locallyConstant_finite_aux, Profinite.NobelingProof.fin_comap_jointlySurjective, coe_comap, LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, comapAddMonoidHom_apply, Condensed.isColimitLocallyConstantPresheaf_desc_apply, CompHausLike.LocallyConstant.functorToPresheaves_map_app, comap_comap, Profinite.exists_locallyConstant, congrLeft_symm_apply, comap_comp, Condensed.isColimitLocallyConstantPresheafDiagram_desc_apply, comap_injective, comap_const, LightCondensed.isColimitLocallyConstantPresheaf_desc_apply, CompHausLike.LocallyConstant.incl_comap, comap_id, Profinite.exists_locallyConstant_finite_nonempty, Profinite.exists_locallyConstant_fin_two, CompHausLike.LocallyConstant.functorToPresheaves_obj_map, congrLeft_apply
congrLeft πŸ“–CompOp
2 mathmath: congrLeft_symm_apply, congrLeft_apply
congrRight πŸ“–CompOp
2 mathmath: congrRight_apply, congrRight_symm_apply
const πŸ“–CompOp
8 mathmath: exists_eq_const, constAddMonoidHom_apply, constRingHom_apply, constMonoidHom_apply, coe_const, eq_const, comap_const, CompHausLike.LocallyConstant.unit_app
desc πŸ“–CompOp
1 mathmath: coe_desc
equivClopens πŸ“–CompOpβ€”
eval πŸ“–CompOp
1 mathmath: eval_apply
flip πŸ“–CompOp
2 mathmath: unflip_flip, flip_unflip
indicator πŸ“–CompOp
4 mathmath: indicator_of_notMem, indicator_apply, indicator_apply_eq_if, indicator_of_mem
instCoeContinuousMap πŸ“–CompOpβ€”
instFunLike πŸ“–CompOp
99 mathmath: apply_eq_of_isPreconnected, congrLeftRingEquiv_apply_apply, coe_smul, charFn_eq_one, Profinite.NobelingProof.coe_Ο€s, range_finite, coe_comap_apply, congrRightβ‚—_symm_apply_apply, zero_apply, comapRingHom_apply_apply, eval_apply, coe_zero, evalRingHom_apply, evalMonoidHom_apply, coe_sub, continuous, congrRightₐ_apply_apply, CompHausLike.LocallyConstant.locallyConstantIsoContinuousMap_inv_apply, ext_iff, congrRightₐ_symm_apply_apply, Profinite.NobelingProof.Ο€s'_apply_apply, congrRightβ‚—_apply_apply, map_apply, congrLeftₐ_apply_apply, coeFnMonoidHom_apply, coeFnAddMonoidHom_apply, indicator_of_notMem, Profinite.NobelingProof.Products.eval_eq, indicator_apply, Profinite.NobelingProof.Products.evalFacProps, ofIsClopen_fiber_zero, mapₐ_apply_apply, mulIndicator_apply, coe_comap, one_apply, congr_arg, evalβ‚—_apply, constₐ_apply_apply, add_apply, charFn_eq_zero, Profinite.NobelingProof.factors_prod_eq_basis_of_ne, coeFnAlgHom_apply, coe_mul, congrLeftRingEquiv_symm_apply_apply, mapRingHom_apply_apply, evalAddMonoidHom_apply, apply_eq_of_preconnectedSpace, comapβ‚—_apply_apply, coe_mk, congrLeftₐ_symm_apply_apply, vadd_apply, Profinite.NobelingProof.Ο€s_apply_apply, coe_const, coe_neg, coe_one, congrLeftβ‚—_symm_apply_apply, TopologicalSpace.Fiber.instFiniteFiberCoeLocallyConstant, neg_apply, coe_inj, congrRightRingEquiv_apply_apply, mapβ‚—_apply_apply, congrRightRingEquiv_symm_apply_apply, eq_const, congrLeftβ‚—_apply_apply, mul_apply, evalₐ_apply, congr_fun, div_apply, coe_injective, coe_inv, comap_const, mulIndicator_of_mem, sub_apply, constβ‚—_apply_apply, coe_div, TopologicalSpace.Fiber.instCompactSpaceElemValSetMemRangeCoeLocallyConstantPreimageSingleton, coe_algebraMap, CompHausLike.LocallyConstant.sigmaComparison_comp_sigmaIso, Profinite.NobelingProof.Products.evalFacProp, coeFnβ‚—_apply, toFun_eq_coe, indicator_apply_eq_if, coe_add, inv_apply, CompHausLike.LocallyConstant.incl_comap, mulIndicator_apply_eq_if, smul_apply, lift_comp_proj, Profinite.NobelingProof.list_prod_apply, coe_charFn, coe_vadd, coeFnRingHom_apply, ofIsClopen_fiber_one, Condensed.locallyConstantIsoFinYoneda_hom_app, coe_continuousMap, indicator_of_mem, Profinite.NobelingProof.factors_prod_eq_basis_of_eq, mulIndicator_of_notMem, comapₐ_apply_apply
instInhabited πŸ“–CompOpβ€”
map πŸ“–CompOp
9 mathmath: congrRight_apply, Profinite.exists_locallyConstant_finite_aux, map_apply, CompHausLike.LocallyConstant.functorToPresheaves_map_app, mapMonoidHom_apply, map_id, map_comp, mapAddMonoidHom_apply, congrRight_symm_apply
mulIndicator πŸ“–CompOp
4 mathmath: mulIndicator_apply, mulIndicator_of_mem, mulIndicator_apply_eq_if, mulIndicator_of_notMem
ofIsClopen πŸ“–CompOp
2 mathmath: ofIsClopen_fiber_zero, ofIsClopen_fiber_one
piecewise πŸ“–CompOp
2 mathmath: piecewise_apply_right, piecewise_apply_left
piecewise' πŸ“–CompOp
2 mathmath: piecewise'_apply_left, piecewise'_apply_right
toContinuousMap πŸ“–CompOp
7 mathmath: toContinuousMapLinearMap_apply, toContinuousMap_injective, toContinuousMapMonoidHom_apply, toContinuousMapAddMonoidHom_apply, CompHausLike.LocallyConstant.locallyConstantIsoContinuousMap_hom, coe_continuousMap, toContinuousMapAlgHom_apply
toFun πŸ“–CompOp
3 mathmath: isLocallyConstant, toFun_eq_coe, Profinite.NobelingProof.coe_Ο€s'
unflip πŸ“–CompOp
2 mathmath: unflip_flip, flip_unflip

Theorems

NameKindAssumesProvesValidatesDepends On
apply_eq_of_isPreconnected πŸ“–mathematicalIsPreconnected
Set
Set.instMembership
DFunLike.coe
LocallyConstant
instFunLike
β€”IsLocallyConstant.apply_eq_of_isPreconnected
isLocallyConstant
apply_eq_of_preconnectedSpace πŸ“–mathematicalβ€”DFunLike.coe
LocallyConstant
instFunLike
β€”IsLocallyConstant.apply_eq_of_isPreconnected
isLocallyConstant
PreconnectedSpace.isPreconnected_univ
coe_comap πŸ“–mathematicalβ€”DFunLike.coe
LocallyConstant
instFunLike
comap
ContinuousMap
ContinuousMap.instFunLike
β€”β€”
coe_comap_apply πŸ“–mathematicalβ€”DFunLike.coe
LocallyConstant
instFunLike
comap
ContinuousMap
ContinuousMap.instFunLike
β€”β€”
coe_const πŸ“–mathematicalβ€”DFunLike.coe
LocallyConstant
instFunLike
const
β€”β€”
coe_continuousMap πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
toContinuousMap
LocallyConstant
instFunLike
β€”β€”
coe_desc πŸ“–mathematicalDFunLike.coe
LocallyConstant
instFunLike
descβ€”β€”
coe_inj πŸ“–mathematicalβ€”DFunLike.coe
LocallyConstant
instFunLike
β€”coe_injective
coe_injective πŸ“–mathematicalβ€”LocallyConstant
DFunLike.coe
instFunLike
β€”DFunLike.ext'
coe_mk πŸ“–mathematicalIsLocallyConstantDFunLike.coe
LocallyConstant
instFunLike
β€”β€”
comap_comap πŸ“–mathematicalβ€”comap
ContinuousMap.comp
β€”β€”
comap_comp πŸ“–mathematicalβ€”comap
ContinuousMap.comp
LocallyConstant
β€”β€”
comap_const πŸ“–mathematicalDFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
comap
const
LocallyConstant
instFunLike
β€”ext
comap_id πŸ“–mathematicalβ€”comap
ContinuousMap.id
LocallyConstant
β€”β€”
comap_injective πŸ“–mathematicalContinuousMap.toFunLocallyConstant
comap
β€”ext
congr_fun
congrLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
LocallyConstant
EquivLike.toFunLike
Equiv.instEquivLike
congrLeft
comap
toContinuousMap
Homeomorph
Homeomorph.instEquivLike
Homeomorph.instContinuousMapClass
Homeomorph.symm
β€”β€”
congrLeft_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
LocallyConstant
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
congrLeft
comap
toContinuousMap
Homeomorph
Homeomorph.instEquivLike
Homeomorph.instContinuousMapClass
β€”β€”
congrRight_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
LocallyConstant
EquivLike.toFunLike
Equiv.instEquivLike
congrRight
map
β€”β€”
congrRight_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
LocallyConstant
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
congrRight
map
β€”β€”
congr_arg πŸ“–mathematicalβ€”DFunLike.coe
LocallyConstant
instFunLike
β€”DFunLike.congr_arg
congr_fun πŸ“–mathematicalβ€”DFunLike.coe
LocallyConstant
instFunLike
β€”DFunLike.congr_fun
continuous πŸ“–mathematicalβ€”Continuous
DFunLike.coe
LocallyConstant
instFunLike
β€”IsLocallyConstant.continuous
isLocallyConstant
eq_const πŸ“–mathematicalβ€”const
DFunLike.coe
LocallyConstant
instFunLike
β€”ext
apply_eq_of_preconnectedSpace
eval_apply πŸ“–mathematicalβ€”DFunLike.coe
LocallyConstant
Pi.topologicalSpace
instFunLike
eval
β€”β€”
exists_eq_const πŸ“–mathematicalβ€”constβ€”eq_const
ext
ext πŸ“–β€”DFunLike.coe
LocallyConstant
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
LocallyConstant
instFunLike
β€”ext
flip_unflip πŸ“–mathematicalβ€”flip
unflip
β€”β€”
indicator_apply πŸ“–mathematicalIsClopenDFunLike.coe
LocallyConstant
instFunLike
indicator
Set.indicator
β€”β€”
indicator_apply_eq_if πŸ“–mathematicalIsClopenDFunLike.coe
LocallyConstant
instFunLike
indicator
Set
Set.instMembership
β€”Set.indicator_apply
indicator_of_mem πŸ“–mathematicalIsClopen
Set
Set.instMembership
DFunLike.coe
LocallyConstant
instFunLike
indicator
β€”Set.indicator_of_mem
indicator_of_notMem πŸ“–mathematicalIsClopen
Set
Set.instMembership
DFunLike.coe
LocallyConstant
instFunLike
indicator
β€”Set.indicator_of_notMem
isLocallyConstant πŸ“–mathematicalβ€”IsLocallyConstant
toFun
β€”β€”
locallyConstant_eq_of_fiber_zero_eq πŸ“–β€”Set.preimage
DFunLike.coe
LocallyConstant
instFunLike
Set
Set.instSingletonSet
β€”β€”ext
map_apply πŸ“–mathematicalβ€”DFunLike.coe
LocallyConstant
instFunLike
map
β€”β€”
map_comp πŸ“–mathematicalβ€”LocallyConstant
map
β€”β€”
map_id πŸ“–mathematicalβ€”map
LocallyConstant
β€”β€”
mulIndicator_apply πŸ“–mathematicalIsClopenDFunLike.coe
LocallyConstant
instFunLike
mulIndicator
Set.mulIndicator
β€”β€”
mulIndicator_apply_eq_if πŸ“–mathematicalIsClopenDFunLike.coe
LocallyConstant
instFunLike
mulIndicator
Set
Set.instMembership
β€”Set.mulIndicator_apply
mulIndicator_of_mem πŸ“–mathematicalIsClopen
Set
Set.instMembership
DFunLike.coe
LocallyConstant
instFunLike
mulIndicator
β€”Set.mulIndicator_of_mem
mulIndicator_of_notMem πŸ“–mathematicalIsClopen
Set
Set.instMembership
DFunLike.coe
LocallyConstant
instFunLike
mulIndicator
β€”Set.mulIndicator_of_notMem
ofIsClopen_fiber_one πŸ“–mathematicalIsClopenSet.preimage
DFunLike.coe
LocallyConstant
instFunLike
ofIsClopen
Set
Set.instSingletonSet
Compl.compl
Set.instCompl
β€”Set.ext
ofIsClopen_fiber_zero πŸ“–mathematicalIsClopenSet.preimage
DFunLike.coe
LocallyConstant
instFunLike
ofIsClopen
Set
Set.instSingletonSet
β€”Set.ext
piecewise'_apply_left πŸ“–mathematicalSet
Set.instHasSubset
Set.instUnion
DFunLike.coe
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
instFunLike
piecewise'β€”piecewise'.eq_1
Continuous.restrictPreimage
continuous_subtype_val
piecewise_apply_left
piecewise'_apply_right πŸ“–mathematicalSet
Set.instHasSubset
Set.instUnion
DFunLike.coe
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
instFunLike
piecewise'β€”piecewise'.eq_1
Continuous.restrictPreimage
continuous_subtype_val
piecewise_apply_right
piecewise_apply_left πŸ“–mathematicalSet
Set.instUnion
Set.univ
DFunLike.coe
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
instFunLike
piecewiseβ€”β€”
piecewise_apply_right πŸ“–mathematicalSet
Set.instUnion
Set.univ
DFunLike.coe
LocallyConstant
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
instFunLike
piecewiseβ€”β€”
range_finite πŸ“–mathematicalβ€”Set.Finite
Set.range
DFunLike.coe
LocallyConstant
instFunLike
β€”IsLocallyConstant.range_finite
isLocallyConstant
toContinuousMap_injective πŸ“–mathematicalβ€”LocallyConstant
ContinuousMap
toContinuousMap
β€”ext
ContinuousMap.congr_fun
toFun_eq_coe πŸ“–mathematicalβ€”toFun
DFunLike.coe
LocallyConstant
instFunLike
β€”β€”
unflip_flip πŸ“–mathematicalβ€”unflip
flip
β€”β€”

LocallyConstant.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
IsLocallyConstant πŸ“–MathDef
22 mathmath: IsLocallyConstant.iff_exists_open, IsLocallyConstant.one, IsLocallyConstant.iff_eventually_eq, IsLocallyConstant.iff_continuous, LocallyConstant.isLocallyConstant, IsLocallyConstant.of_constant_on_connected_clopens, Module.isLocallyConstant_rankAtStalk_freeLocus, IsLocallyConstant.const, MDifferentiable.isLocallyConstant, IsLocallyConstant.tfae, IsLocallyConstant.zero, IsLocallyConstant.of_discrete, Module.isLocallyConstant_rankAtStalk, IsLocallyConstant.of_constant_on_connected_components, DiscreteQuotient.proj_isLocallyConstant, isLocallyConstant_of_fderiv_eq_zero, IsLocallyConstant.of_constant_on_preconnected_clopens, IsLocallyConstant.of_germ_isConstant, IsLocallyConstant.of_constant, IsLocallyConstant.iff_isOpen_fiber, IsLocallyConstant.iff_is_const, IsLocallyConstant.iff_isOpen_fiber_apply

---

← Back to Index