Documentation Verification Report

LocallyFinite

πŸ“ Source: Mathlib/Topology/LocallyFinite.lean

Statistics

MetricCount
DefinitionsLocallyFinite, LocallyFinite
2
TheoremslocallyFinite_comp_iff, closure, closure_iUnion, comp_injOn, comp_injective, continuous, continuous', continuousOn_iUnion, continuousOn_iUnion', eventually_smallSets, eventually_subset, exists_forall_eventually_atTop_eventuallyEq, exists_forall_eventually_atTop_eventually_eq', exists_forall_eventually_eq_prod, exists_mem_basis, iInter_compl_mem_nhds, isClosed_iUnion, nhdsWithin_iUnion, of_comp_surjective, on_range, option_elim', point_finite, preimage_continuous, prod_left, prod_right, subset, sumElim, locallyFinite_iff_smallSets, locallyFinite_of_finite, locallyFinite_option, locallyFinite_sum
31
Total33

Equiv

Theorems

NameKindAssumesProvesValidatesDepends On
locallyFinite_comp_iff πŸ“–mathematicalβ€”LocallyFinite
Set
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
β€”apply_symm_apply
LocallyFinite.comp_injective
injective

LocallyFinite

Theorems

NameKindAssumesProvesValidatesDepends On
closure πŸ“–mathematicalLocallyFiniteclosureβ€”interior_mem_nhds
Set.Finite.subset
Set.Nonempty.mono
Set.inter_subset_inter_right
interior_subset
Set.Nonempty.of_closure
IsOpen.closure_inter
isOpen_interior
closure_iUnion πŸ“–mathematicalLocallyFiniteclosure
Set.iUnion
β€”Set.ext
nhdsWithin_iUnion
comp_injOn πŸ“–mathematicalLocallyFinite
Set.InjOn
setOf
Set.Nonempty
Setβ€”Set.Finite.preimage
Set.InjOn.mono
Set.Nonempty.left
comp_injective πŸ“–mathematicalLocallyFiniteSetβ€”comp_injOn
Function.Injective.injOn
continuous πŸ“–mathematicalLocallyFinite
Set.iUnion
Set.univ
IsClosed
ContinuousOn
Continuousβ€”continuousOn_univ
continuousOn_iUnion
continuous' πŸ“–mathematicalLocallyFinite
Set.iUnion
Set.univ
ContinuousWithinAt
Continuousβ€”continuousOn_univ
continuousOn_iUnion'
continuousOn_iUnion πŸ“–mathematicalLocallyFinite
IsClosed
ContinuousOn
Set.iUnionβ€”continuousOn_iUnion'
IsClosed.closure_subset
continuousOn_iUnion' πŸ“–mathematicalLocallyFinite
ContinuousWithinAt
ContinuousOn
Set.iUnion
β€”ContinuousWithinAt.eq_1
nhdsWithin_iUnion
Filter.tendsto_iSup
Filter.not_neBot
mem_closure_iff_nhdsWithin_neBot
Filter.tendsto_bot
eventually_smallSets πŸ“–mathematicalLocallyFiniteFilter.Eventually
Set
Set.Finite
setOf
Set.Nonempty
Set.instInter
Filter.smallSets
nhds
β€”locallyFinite_iff_smallSets
eventually_subset πŸ“–mathematicalLocallyFinite
IsClosed
Filter.Eventually
Set
Set.instHasSubset
setOf
Set.instMembership
nhds
β€”Filter.mp_mem
iInter_compl_mem_nhds
Filter.univ_mem'
not_imp_not
exists_forall_eventually_atTop_eventuallyEq πŸ“–mathematicalLocallyFinite
setOf
Filter.Eventually
Filter.EventuallyEq
nhds
Filter.atTop
Nat.instPreorder
β€”exists_forall_eventually_atTop_eventually_eq'
exists_forall_eventually_atTop_eventually_eq' πŸ“–mathematicalLocallyFinite
setOf
Filter.Eventually
nhds
Filter.atTop
Nat.instPreorder
β€”Filter.Eventually.curry
exists_forall_eventually_eq_prod
exists_forall_eventually_eq_prod πŸ“–mathematicalLocallyFinite
setOf
Filter.Eventually
SProd.sprod
Filter
Filter.instSProd
Filter.atTop
Nat.instPreorder
nhds
β€”by_contra
LT.lt.not_ge
GT.gt.lt
Nat.le_induction
Filter.mp_mem
Filter.prod_mem_prod
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
Filter.univ_mem'
le_max_left
le_max_right
mem_of_mem_nhds
Set.Finite.bddAbove
SemilatticeSup.instIsDirectedOrder
exists_mem_basis πŸ“–mathematicalLocallyFinite
Filter.HasBasis
nhds
Set.Finite
setOf
Set.Nonempty
Set
Set.instInter
β€”Filter.HasBasis.eventually_iff
Filter.HasBasis.smallSets
eventually_smallSets
Set.Subset.rfl
iInter_compl_mem_nhds πŸ“–mathematicalLocallyFinite
IsClosed
Set
Filter
Filter.instMembership
nhds
Set.iInter
Set.instMembership
Compl.compl
Set.instCompl
β€”IsOpen.mem_nhds
isClosed_iUnion
comp_injective
Subtype.val_injective
Set.iInter_subtype
Set.compl_iUnion
isOpen_compl_iff
Set.mem_iInterβ‚‚
isClosed_iUnion πŸ“–mathematicalLocallyFinite
IsClosed
Set.iUnionβ€”closure_iUnion
IsClosed.closure_eq
nhdsWithin_iUnion πŸ“–mathematicalLocallyFinitenhdsWithin
Set.iUnion
iSup
Filter
Filter.instSupSet
β€”le_antisymm
Set.iUnion_inter
nhdsWithin_inter_of_mem'
nhdsWithin_le_nhds
Set.iUnion_nonempty_self
nhdsWithin_biUnion
iSupβ‚‚_le_iSup
iSup_mono
nhdsWithin_mono
Set.inter_subset_left
Monotone.le_map_iSup
of_comp_surjective πŸ“–β€”LocallyFinite
Set
β€”β€”Function.surjInv_eq
comp_injective
Function.injective_surjInv
on_range πŸ“–mathematicalLocallyFiniteSet
Set.instMembership
Set.range
β€”of_comp_surjective
Set.rangeFactorization_surjective
option_elim' πŸ“–mathematicalLocallyFiniteOption.elim'
Set
β€”locallyFinite_option
point_finite πŸ“–mathematicalLocallyFiniteSet.Finite
setOf
Set
Set.instMembership
β€”Set.Finite.subset
mem_of_mem_nhds
preimage_continuous πŸ“–mathematicalLocallyFinite
Continuous
Set.preimageβ€”Continuous.continuousAt
Set.Finite.subset
prod_left πŸ“–mathematicalLocallyFiniteinstTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
β€”subset
preimage_continuous
continuous_snd
Set.prod_subset_preimage_snd
prod_right πŸ“–mathematicalLocallyFiniteinstTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
β€”subset
preimage_continuous
continuous_fst
Set.prod_subset_preimage_fst
subset πŸ“–β€”LocallyFinite
Set
Set.instHasSubset
β€”β€”Set.Finite.subset
Set.Nonempty.mono
Set.inter_subset_inter
Set.Subset.rfl
sumElim πŸ“–mathematicalLocallyFiniteSetβ€”locallyFinite_sum

SimpleGraph

Definitions

NameCategoryTheorems
LocallyFinite πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
LocallyFinite πŸ“–MathDef
26 mathmath: locallyFinite_iff_smallSets, SmoothPartitionOfUnity.locallyFinite, SmoothPartitionOfUnity.locallyFinite', precise_refinement, refinement_of_locallyCompact_sigmaCompact_of_nhds_basis, PartitionOfUnity.locallyFinite, locallyFinite_sum, SmoothBumpCovering.locallyFinite', locallyFinite_of_finite, exists_locallyFinite_iUnion_eq_ball_radius_lt, ParacompactSpace.locallyFinite_refinement, refinement_of_locallyCompact_sigmaCompact_of_nhds_basis_set, BumpCovering.locallyFinite, PartitionOfUnity.locallyFinite', LocallyFinite.Realizer.to_locallyFinite, PartitionOfUnity.locallyFinite_tsupport, BumpCovering.locallyFinite_tsupport, locallyFinite_support_iff, Equiv.locallyFinite_comp_iff, locallyFinite_option, locallyFinite_iff_exists_realizer, SmoothBumpCovering.locallyFinite, precise_refinement_set, exists_locallyFinite_subset_iUnion_ball_radius_lt, BumpCovering.locallyFinite', locallyFinite_mulSupport_iff

Theorems

NameKindAssumesProvesValidatesDepends On
locallyFinite_iff_smallSets πŸ“–mathematicalβ€”LocallyFinite
Filter.Eventually
Set
Set.Finite
setOf
Set.Nonempty
Set.instInter
Filter.smallSets
nhds
β€”Filter.eventually_smallSets'
Set.Finite.subset
Set.Nonempty.mono
Set.inter_subset_inter_right
locallyFinite_of_finite πŸ“–mathematicalβ€”LocallyFiniteβ€”Filter.univ_mem
Set.toFinite
Subtype.finite
locallyFinite_option πŸ“–mathematicalβ€”LocallyFinite
Set
β€”Equiv.locallyFinite_comp_iff
locallyFinite_sum
Finite.of_fintype
locallyFinite_sum πŸ“–mathematicalβ€”LocallyFinite
Set
β€”β€”

---

← Back to Index