Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/Maps/Basic.lean

Statistics

MetricCount
Definitions0
Theoremspreimage, isEmbedding_induced, isEmbedding, closure_image_eq_of_continuous, closure_image_subset, comap_nhdsSet_eq, comap_nhdsSet_le, comap_nhds_eq, comap_nhds_le, comp, eventually_nhds_fiber, frequently_nhds_fiber, id, isClosed_range, isQuotientMap, lift'_closure_map_eq, mapClusterPt_iff_lift'_closure, of_comp_surjective, of_inverse, of_nonempty, clusterPt_comap, comp, id, image_interior_subset, image_mem_nhds, interior_preimage_subset_preimage_interior, isOpen_range, isQuotientMap, map_nhdsSet_eq, map_nhds_eq, mapsTo_interior, nhds_le, of_inverse, of_isEmpty, of_nhds_le, of_sections, preimage_closure_eq_closure_preimage, preimage_closure_subset_closure_preimage, preimage_frontier_eq_frontier_preimage, preimage_frontier_subset_frontier_preimage, preimage_interior_eq_interior_preimage, range_mem_nhds, closure_image_eq, comp, continuous, id, isClosedEmbedding_iff_continuous_injective_isClosedMap, isClosedMap, isClosed_iff_image_isClosed, isClosed_iff_preimage_isClosed, isEmbedding, isInducing, of_comp, of_comp_iff, of_continuous_injective_isClosedMap, of_isEmbedding_isClosedMap, tendsto_nhds_iff, closure_eq_preimage_closure_image, comp, continuous, continuous_iff, discreteTopology, id, induced, isInducing, isOpenEmbedding_of_surjective, map_nhds_eq, map_nhds_of_mem, mk', of_comp, of_comp_iff, of_leftInverse, of_subsingleton, tendsto_nhds_iff, basis_nhds, closure_eq_preimage_closure_image, comp, continuous, continuousAt_iff, continuousAt_iff', continuous_iff, dense_iff, id, image_mem_nhdsWithin, indiscreteTopology, induced, isClosedMap, isClosed_iff, isClosed_iff', isClosed_preimage, isOpenMap, isOpen_iff, mapClusterPt_iff, map_nhds_eq, map_nhds_of_mem, nhdsSet_eq_comap, nhds_eq_comap, nontrivialTopology, of_comp, of_comp_iff, of_subsingleton, setOf_isOpen, tendsto_nhds_iff, comp, continuous, continuousAt_iff, id, image_mem_nhds, isEmbedding, isInducing, isOpenMap, isOpenMap_iff, isOpen_iff_image_isOpen, isOpen_iff_preimage_isOpen, map_nhds_eq, of_comp, of_comp_iff, of_continuous_injective_isOpenMap, of_isEmbedding, of_isEmbedding_isOpenMap, of_isEmpty, tendsto_nhds_iff, tendsto_nhds_iff', comp, continuous, continuous_iff, id, isClosed_preimage, isOpen_preimage, of_comp, of_comp_isQuotientMap, of_comp_of_eq_coinduced, of_inverse, isInducing_iff_nhds, isOpenEmbedding_iff_continuous_injective_isOpenMap, isOpenEmbedding_iff_isEmbedding_isOpenMap, isQuotientMap_iff, isQuotientMap_iff_isClosed, isClosedMap_iff_closure_image, isClosedMap_iff_clusterPt, isClosedMap_iff_comap_nhdsSet_le, isClosedMap_iff_comap_nhds_le, isClosedMap_iff_kernImage, isClosedMap_iff_kernImage_interior, isOpenMap_iff_closure_kernImage, isOpenMap_iff_clusterPt_comap, isOpenMap_iff_image_interior, isOpenMap_iff_interior, isOpenMap_iff_kernImage, isOpenMap_iff_nhds_le
150
Total150

Dense

Theorems

NameKindAssumesProvesValidatesDepends On
preimage πŸ“–mathematicalDense
IsOpenMap
Set.preimageβ€”IsOpenMap.preimage_closure_subset_closure_preimage

Function.Injective

Theorems

NameKindAssumesProvesValidatesDepends On
isEmbedding_induced πŸ“–mathematicalβ€”Topology.IsEmbedding
TopologicalSpace.induced
β€”Topology.IsEmbedding.induced

Function.LeftInverse

Theorems

NameKindAssumesProvesValidatesDepends On
isEmbedding πŸ“–mathematicalContinuousTopology.IsEmbeddingβ€”Topology.IsEmbedding.of_leftInverse

IsClosedMap

Theorems

NameKindAssumesProvesValidatesDepends On
closure_image_eq_of_continuous πŸ“–mathematicalIsClosedMap
Continuous
closure
Set.image
β€”subset_antisymm
Set.instAntisymmSubset
closure_image_subset
image_closure_subset_closure_image
closure_image_subset πŸ“–mathematicalIsClosedMapSet
Set.instHasSubset
closure
Set.image
β€”closure_minimal
Set.image_mono
subset_closure
isClosed_closure
comap_nhdsSet_eq πŸ“–mathematicalIsClosedMap
Continuous
Filter.comap
nhdsSet
Set.preimage
β€”le_antisymm
isClosedMap_iff_comap_nhdsSet_le
nhdsSet_le
LE.le.trans
Filter.Tendsto.le_comap
Continuous.tendsto
Filter.comap_mono
nhds_le_nhdsSet
comap_nhdsSet_le πŸ“–mathematicalIsClosedMapFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.comap
nhdsSet
Set.preimage
β€”isClosedMap_iff_comap_nhdsSet_le
comap_nhds_eq πŸ“–mathematicalIsClosedMap
Continuous
Filter.comap
nhds
nhdsSet
Set.preimage
Set
Set.instSingletonSet
β€”le_antisymm
isClosedMap_iff_comap_nhds_le
nhdsSet_le
Filter.Tendsto.le_comap
Continuous.tendsto
comap_nhds_le πŸ“–mathematicalIsClosedMapFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.comap
nhds
nhdsSet
Set.preimage
Set
Set.instSingletonSet
β€”isClosedMap_iff_comap_nhds_le
comp πŸ“–β€”IsClosedMapβ€”β€”Set.image_comp
eventually_nhds_fiber πŸ“–β€”IsClosedMap
Filter.Eventually
nhds
β€”β€”Filter.Eventually.filter_mono
comap_nhds_le
eventually_nhdsSet_iff_forall
Filter.eventually_comap
frequently_nhds_fiber πŸ“–β€”IsClosedMap
Filter.Frequently
Set
Set.instMembership
Set.preimage
Set.instSingletonSet
nhds
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
eventually_nhds_fiber
id πŸ“–mathematicalβ€”IsClosedMapβ€”Set.image_id
isClosed_range πŸ“–mathematicalIsClosedMapIsClosed
Set.range
β€”isClosed_univ
Set.image_univ
isQuotientMap πŸ“–mathematicalIsClosedMap
Continuous
Topology.IsQuotientMapβ€”Topology.isQuotientMap_iff_isClosed
IsClosed.preimage
Function.Surjective.image_preimage
lift'_closure_map_eq πŸ“–mathematicalIsClosedMap
Continuous
Filter.lift'
Filter.map
closure
β€”Filter.map_lift'_eq2
monotone_closure
Filter.map_lift'_eq
closure_image_eq_of_continuous
mapClusterPt_iff_lift'_closure πŸ“–mathematicalIsClosedMap
Continuous
MapClusterPt
Filter.NeBot
Filter
Filter.instInf
Filter.lift'
closure
Filter.principal
Set.preimage
Set
Set.instSingletonSet
β€”MapClusterPt.eq_1
clusterPt_iff_lift'_closure'
lift'_closure_map_eq
Filter.comap_principal
Filter.map_neBot_iff
Filter.push_pull
Filter.principal_singleton
of_comp_surjective πŸ“–β€”Continuous
IsClosedMap
β€”β€”Set.image_preimage_eq
Set.image_comp
IsClosed.preimage
of_inverse πŸ“–mathematicalContinuousIsClosedMapβ€”Set.image_eq_preimage_of_inverse
IsClosed.preimage
of_nonempty πŸ“–mathematicalIsClosed
Set.image
IsClosedMapβ€”Set.eq_empty_or_nonempty
Set.image_empty

IsOpenMap

Theorems

NameKindAssumesProvesValidatesDepends On
clusterPt_comap πŸ“–mathematicalIsOpenMapClusterPt
Filter.comap
β€”ClusterPt.eq_1
Filter.map_neBot_iff
Filter.push_pull
Filter.NeBot.mono
ClusterPt.neBot
inf_le_inf_right
nhds_le
comp πŸ“–β€”IsOpenMapβ€”β€”Set.image_comp
id πŸ“–mathematicalβ€”IsOpenMapβ€”Set.image_id
image_interior_subset πŸ“–mathematicalIsOpenMapSet
Set.instHasSubset
Set.image
interior
β€”Set.MapsTo.image_subset
mapsTo_interior
Set.mapsTo_image
image_mem_nhds πŸ“–mathematicalIsOpenMap
Set
Filter
Filter.instMembership
nhds
Set.imageβ€”mem_nhds_iff
Filter.mem_of_superset
IsOpen.mem_nhds
Set.mem_image_of_mem
Set.image_mono
interior_preimage_subset_preimage_interior πŸ“–mathematicalIsOpenMapSet
Set.instHasSubset
interior
Set.preimage
β€”mapsTo_interior
Set.mapsTo_preimage
isOpen_range πŸ“–mathematicalIsOpenMapIsOpen
Set.range
β€”Set.image_univ
isOpen_univ
isQuotientMap πŸ“–mathematicalIsOpenMap
Continuous
Topology.IsQuotientMapβ€”Topology.isQuotientMap_iff
IsOpen.preimage
Function.Surjective.image_preimage
map_nhdsSet_eq πŸ“–mathematicalIsOpenMap
Continuous
Filter.map
nhdsSet
Set.image
β€”Set.biUnion_of_singleton
Set.image_iUnion
nhdsSet_iUnion
Filter.map_iSup
iSup_congr_Prop
Set.image_singleton
nhdsSet_singleton
map_nhds_eq
Continuous.continuousAt
map_nhds_eq πŸ“–mathematicalIsOpenMap
ContinuousAt
Filter.map
nhds
β€”le_antisymm
nhds_le
mapsTo_interior πŸ“–mathematicalIsOpenMap
Set.MapsTo
interiorβ€”Set.mapsTo_iff_image_subset
interior_maximal
Set.MapsTo.image_subset
Set.MapsTo.mono
interior_subset
Set.Subset.rfl
isOpen_interior
nhds_le πŸ“–mathematicalIsOpenMapFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
Filter.map
β€”Filter.le_map
image_mem_nhds
of_inverse πŸ“–mathematicalContinuousIsOpenMapβ€”of_sections
Continuous.continuousAt
of_isEmpty πŸ“–mathematicalβ€”IsOpenMapβ€”of_nhds_le
of_nhds_le πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
Filter.map
IsOpenMapβ€”isOpen_iff_mem_nhds
Filter.image_mem_map
IsOpen.mem_nhds
of_sections πŸ“–mathematicalContinuousAtIsOpenMapβ€”of_nhds_le
Filter.map_map
Function.RightInverse.comp_eq_id
Filter.map_id
Filter.map_mono
preimage_closure_eq_closure_preimage πŸ“–mathematicalIsOpenMap
Continuous
Set.preimage
closure
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
preimage_closure_subset_closure_preimage
Continuous.closure_preimage_subset
preimage_closure_subset_closure_preimage πŸ“–mathematicalIsOpenMapSet
Set.instHasSubset
Set.preimage
closure
β€”Set.compl_subset_compl
interior_preimage_subset_preimage_interior
preimage_frontier_eq_frontier_preimage πŸ“–mathematicalIsOpenMap
Continuous
Set.preimage
frontier
β€”frontier_eq_closure_inter_closure
preimage_closure_eq_closure_preimage
preimage_frontier_subset_frontier_preimage πŸ“–mathematicalIsOpenMapSet
Set.instHasSubset
Set.preimage
frontier
β€”frontier_eq_closure_inter_closure
Set.inter_subset_inter
preimage_closure_subset_closure_preimage
preimage_interior_eq_interior_preimage πŸ“–mathematicalIsOpenMap
Continuous
Set.preimage
interior
β€”Set.Subset.antisymm
preimage_interior_subset_interior_preimage
interior_preimage_subset_preimage_interior
range_mem_nhds πŸ“–mathematicalIsOpenMapSet
Filter
Filter.instMembership
nhds
Set.range
β€”IsOpen.mem_nhds
isOpen_range
Set.mem_range_self

Topology

Theorems

NameKindAssumesProvesValidatesDepends On
isInducing_iff_nhds πŸ“–mathematicalβ€”IsInducing
nhds
Filter.comap
β€”isInducing_iff
induced_iff_nhds_eq
isOpenEmbedding_iff_continuous_injective_isOpenMap πŸ“–mathematicalβ€”IsOpenEmbedding
Continuous
IsOpenMap
β€”IsOpenEmbedding.continuous
IsEmbedding.injective
IsOpenEmbedding.toIsEmbedding
IsOpenEmbedding.isOpenMap
IsOpenEmbedding.of_continuous_injective_isOpenMap
isOpenEmbedding_iff_isEmbedding_isOpenMap πŸ“–mathematicalβ€”IsOpenEmbedding
IsEmbedding
IsOpenMap
β€”IsOpenEmbedding.toIsEmbedding
IsOpenEmbedding.isOpenMap
IsOpenEmbedding.of_isEmbedding_isOpenMap
isQuotientMap_iff πŸ“–mathematicalβ€”IsQuotientMap
IsOpen
Set.preimage
β€”isQuotientMap_iff'
TopologicalSpace.ext_iff
isQuotientMap_iff_isClosed πŸ“–mathematicalβ€”IsQuotientMap
IsClosed
Set.preimage
β€”isQuotientMap_iff
Iff.and
Function.Surjective.forall
compl_surjective

Topology.IsClosedEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
closure_image_eq πŸ“–mathematicalTopology.IsClosedEmbeddingclosure
Set.image
β€”IsClosedMap.closure_image_eq_of_continuous
isClosedMap
continuous
comp πŸ“–β€”Topology.IsClosedEmbeddingβ€”β€”Topology.IsEmbedding.comp
isEmbedding
IsClosedMap.isClosed_range
IsClosedMap.comp
isClosedMap
continuous πŸ“–mathematicalTopology.IsClosedEmbeddingContinuousβ€”Topology.IsEmbedding.continuous
isEmbedding
id πŸ“–mathematicalβ€”Topology.IsClosedEmbeddingβ€”Topology.IsEmbedding.id
IsClosedMap.isClosed_range
IsClosedMap.id
isClosedEmbedding_iff_continuous_injective_isClosedMap πŸ“–mathematicalβ€”Topology.IsClosedEmbedding
Continuous
IsClosedMap
β€”continuous
Topology.IsEmbedding.injective
toIsEmbedding
isClosedMap
of_continuous_injective_isClosedMap
isClosedMap πŸ“–mathematicalTopology.IsClosedEmbeddingIsClosedMapβ€”Topology.IsInducing.isClosedMap
Topology.IsEmbedding.isInducing
isEmbedding
isClosed_range
isClosed_iff_image_isClosed πŸ“–mathematicalTopology.IsClosedEmbeddingIsClosed
Set.image
β€”isClosedMap
Set.preimage_image_eq
Topology.IsEmbedding.injective
toIsEmbedding
IsClosed.preimage
continuous
isClosed_iff_preimage_isClosed πŸ“–mathematicalTopology.IsClosedEmbedding
Set
Set.instHasSubset
Set.range
IsClosed
Set.preimage
β€”isClosed_iff_image_isClosed
Set.image_preimage_eq_of_subset
isEmbedding πŸ“–mathematicalTopology.IsClosedEmbeddingTopology.IsEmbeddingβ€”toIsEmbedding
isInducing πŸ“–mathematicalTopology.IsClosedEmbeddingTopology.IsInducingβ€”Topology.IsEmbedding.isInducing
isEmbedding
of_comp πŸ“–β€”Topology.IsEmbedding
Topology.IsClosedEmbedding
β€”β€”Topology.IsEmbedding.of_comp_iff
isEmbedding
Set.range_comp
Function.Injective.preimage_image
Topology.IsEmbedding.injective
Topology.IsInducing.isClosed_preimage
Topology.IsEmbedding.toIsInducing
isClosed_range
of_comp_iff πŸ“–β€”Topology.IsClosedEmbeddingβ€”β€”Topology.IsEmbedding.of_comp_iff
isEmbedding
Set.range_comp
isClosed_iff_image_isClosed
of_continuous_injective_isClosedMap πŸ“–mathematicalContinuous
IsClosedMap
Topology.IsClosedEmbeddingβ€”of_isEmbedding_isClosedMap
LE.le.antisymm
Continuous.le_induced
IsClosed.isOpen_compl
IsOpen.isClosed_compl
Set.preimage_compl
Set.preimage_image_eq
compl_compl
of_isEmbedding_isClosedMap πŸ“–mathematicalTopology.IsEmbedding
IsClosedMap
Topology.IsClosedEmbeddingβ€”isClosed_univ
Set.image_univ
tendsto_nhds_iff πŸ“–mathematicalTopology.IsClosedEmbeddingFilter.Tendsto
nhds
β€”Topology.IsEmbedding.tendsto_nhds_iff
isEmbedding

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
closure_eq_preimage_closure_image πŸ“–mathematicalTopology.IsEmbeddingclosure
Set.preimage
Set.image
β€”Topology.IsInducing.closure_eq_preimage_closure_image
toIsInducing
comp πŸ“–β€”Topology.IsEmbeddingβ€”β€”Topology.IsInducing.comp
isInducing
injective
continuous πŸ“–mathematicalTopology.IsEmbeddingContinuousβ€”Topology.IsInducing.continuous
isInducing
continuous_iff πŸ“–mathematicalTopology.IsEmbeddingContinuousβ€”Topology.IsInducing.continuous_iff
isInducing
discreteTopology πŸ“–mathematicalTopology.IsEmbeddingDiscreteTopologyβ€”DiscreteTopology.of_continuous_injective
continuous
injective
id πŸ“–mathematicalβ€”Topology.IsEmbeddingβ€”Topology.IsInducing.id
induced πŸ“–mathematicalβ€”Topology.IsEmbedding
TopologicalSpace.induced
β€”Topology.IsInducing.induced
isInducing πŸ“–mathematicalTopology.IsEmbeddingTopology.IsInducingβ€”toIsInducing
isOpenEmbedding_of_surjective πŸ“–mathematicalTopology.IsEmbeddingTopology.IsOpenEmbeddingβ€”isOpen_univ
Function.Surjective.range_eq
map_nhds_eq πŸ“–mathematicalTopology.IsEmbeddingFilter.map
nhds
nhdsWithin
Set.range
β€”Topology.IsInducing.map_nhds_eq
toIsInducing
map_nhds_of_mem πŸ“–mathematicalTopology.IsEmbedding
Set
Filter
Filter.instMembership
nhds
Set.range
Filter.mapβ€”Topology.IsInducing.map_nhds_of_mem
toIsInducing
mk' πŸ“–mathematicalFilter.comap
nhds
Topology.IsEmbeddingβ€”Topology.isInducing_iff_nhds
of_comp πŸ“–β€”Continuous
Topology.IsEmbedding
β€”β€”Topology.IsInducing.of_comp
isInducing
Function.Injective.of_comp
injective
of_comp_iff πŸ“–β€”Topology.IsEmbeddingβ€”β€”Topology.IsInducing.of_comp_iff
isInducing
Function.Injective.of_comp_iff
injective
of_leftInverse πŸ“–mathematicalContinuousTopology.IsEmbeddingβ€”of_comp
id
Function.LeftInverse.comp_eq_id
of_subsingleton πŸ“–mathematicalβ€”Topology.IsEmbeddingβ€”Topology.IsInducing.of_subsingleton
Function.injective_of_subsingleton
tendsto_nhds_iff πŸ“–mathematicalTopology.IsEmbeddingFilter.Tendsto
nhds
β€”Topology.IsInducing.tendsto_nhds_iff
isInducing

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
basis_nhds πŸ“–mathematicalTopology.IsInducing
Filter.HasBasis
nhds
Set
Set.preimage
β€”Filter.HasBasis.comap
nhds_eq_comap
closure_eq_preimage_closure_image πŸ“–mathematicalTopology.IsInducingclosure
Set.preimage
Set.image
β€”Set.ext
Set.mem_preimage
closure_induced
eq_induced
comp πŸ“–β€”Topology.IsInducingβ€”β€”eq_induced
induced_compose
continuous πŸ“–mathematicalTopology.IsInducingContinuousβ€”continuous_iff
continuous_id
continuousAt_iff πŸ“–mathematicalTopology.IsInducingContinuousAtβ€”tendsto_nhds_iff
continuousAt_iff' πŸ“–mathematicalTopology.IsInducing
Set
Filter
Filter.instMembership
nhds
Set.range
ContinuousAtβ€”map_nhds_of_mem
Filter.map_map
continuous_iff πŸ“–mathematicalTopology.IsInducingContinuousβ€”continuousAt_iff
dense_iff πŸ“–mathematicalTopology.IsInducingDense
Set
Set.instMembership
closure
Set.image
β€”closure_eq_preimage_closure_image
id πŸ“–mathematicalβ€”Topology.IsInducingβ€”induced_id
image_mem_nhdsWithin πŸ“–mathematicalTopology.IsInducing
Set
Filter
Filter.instMembership
nhds
nhdsWithin
Set.range
Set.image
β€”Filter.image_mem_map
map_nhds_eq
indiscreteTopology πŸ“–mathematicalTopology.IsInducingIndiscreteTopologyβ€”IndiscreteTopology.eq_top
eq_induced
induced_top
induced πŸ“–mathematicalβ€”Topology.IsInducing
TopologicalSpace.induced
β€”β€”
isClosedMap πŸ“–mathematicalTopology.IsInducingIsClosedMapβ€”isClosed_iff
Set.image_preimage_eq_inter_range
IsClosed.inter
isClosed_iff πŸ“–mathematicalTopology.IsInducingIsClosed
Set.preimage
β€”eq_induced
isClosed_induced_iff
isClosed_iff' πŸ“–mathematicalTopology.IsInducingIsClosed
Set
Set.instMembership
β€”eq_induced
isClosed_induced_iff'
isClosed_preimage πŸ“–mathematicalTopology.IsInducingIsClosed
Set.preimage
β€”isClosed_iff
isOpenMap πŸ“–mathematicalTopology.IsInducing
IsOpen
Set.range
IsOpenMapβ€”IsOpenMap.of_nhds_le
Eq.ge
map_nhds_of_mem
IsOpen.mem_nhds
Set.mem_range_self
isOpen_iff πŸ“–mathematicalTopology.IsInducingIsOpen
Set.preimage
β€”eq_induced
isOpen_induced_iff
mapClusterPt_iff πŸ“–mathematicalTopology.IsInducingMapClusterPt
ClusterPt
β€”Filter.push_pull'
nhds_eq_comap
Filter.map_neBot_iff
map_nhds_eq πŸ“–mathematicalTopology.IsInducingFilter.map
nhds
nhdsWithin
Set.range
β€”map_nhds_induced_eq
eq_induced
map_nhds_of_mem πŸ“–mathematicalTopology.IsInducing
Set
Filter
Filter.instMembership
nhds
Set.range
Filter.mapβ€”map_nhds_induced_of_mem
eq_induced
nhdsSet_eq_comap πŸ“–mathematicalTopology.IsInducingnhdsSet
Filter.comap
Set.image
β€”Set.image_congr
nhds_eq_comap
sSup_image
iSup_image
Filter.comap_iSup
nhds_eq_comap πŸ“–mathematicalTopology.IsInducingnhds
Filter.comap
β€”Topology.isInducing_iff_nhds
nontrivialTopology πŸ“–mathematicalTopology.IsInducingNontrivialTopologyβ€”not_imp_not
indiscreteTopology
of_comp πŸ“–β€”Continuous
Topology.IsInducing
β€”β€”le_antisymm
Continuous.le_induced
eq_induced
induced_compose
le_imp_le_of_le_of_le
le_refl
induced_mono
of_comp_iff πŸ“–β€”Topology.IsInducingβ€”β€”Topology.isInducing_iff
eq_induced
induced_compose
comp
of_subsingleton πŸ“–mathematicalβ€”Topology.IsInducingβ€”Unique.instSubsingleton
setOf_isOpen πŸ“–mathematicalTopology.IsInducingsetOf
Set
IsOpen
Set.image
Set.preimage
β€”Set.ext
isOpen_iff
tendsto_nhds_iff πŸ“–mathematicalTopology.IsInducingFilter.Tendsto
nhds
β€”nhds_eq_comap
Filter.tendsto_comap_iff

Topology.IsOpenEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–β€”Topology.IsOpenEmbeddingβ€”β€”Topology.IsEmbedding.comp
toIsEmbedding
IsOpenMap.isOpen_range
IsOpenMap.comp
isOpenMap
continuous πŸ“–mathematicalTopology.IsOpenEmbeddingContinuousβ€”Topology.IsEmbedding.continuous
isEmbedding
continuousAt_iff πŸ“–mathematicalTopology.IsOpenEmbeddingContinuousAtβ€”tendsto_nhds_iff'
id πŸ“–mathematicalβ€”Topology.IsOpenEmbeddingβ€”Topology.IsEmbedding.id
IsOpenMap.isOpen_range
IsOpenMap.id
image_mem_nhds πŸ“–mathematicalTopology.IsOpenEmbeddingSet
Filter
Filter.instMembership
nhds
Set.image
β€”map_nhds_eq
Filter.mem_map
Set.preimage_image_eq
Topology.IsEmbedding.injective
toIsEmbedding
isEmbedding πŸ“–mathematicalTopology.IsOpenEmbeddingTopology.IsEmbeddingβ€”toIsEmbedding
isInducing πŸ“–mathematicalTopology.IsOpenEmbeddingTopology.IsInducingβ€”Topology.IsEmbedding.isInducing
isEmbedding
isOpenMap πŸ“–mathematicalTopology.IsOpenEmbeddingIsOpenMapβ€”Topology.IsInducing.isOpenMap
Topology.IsEmbedding.isInducing
isEmbedding
isOpen_range
isOpenMap_iff πŸ“–mathematicalTopology.IsOpenEmbeddingIsOpenMapβ€”map_nhds_eq
Filter.map_le_map_iff
Topology.IsEmbedding.injective
toIsEmbedding
isOpen_iff_image_isOpen πŸ“–mathematicalTopology.IsOpenEmbeddingIsOpen
Set.image
β€”isOpenMap
Set.preimage_image_eq
Topology.IsEmbedding.injective
toIsEmbedding
IsOpen.preimage
Topology.IsEmbedding.continuous
isEmbedding
isOpen_iff_preimage_isOpen πŸ“–mathematicalTopology.IsOpenEmbedding
Set
Set.instHasSubset
Set.range
IsOpen
Set.preimage
β€”isOpen_iff_image_isOpen
Set.image_preimage_eq_inter_range
Set.inter_eq_self_of_subset_left
map_nhds_eq πŸ“–mathematicalTopology.IsOpenEmbeddingFilter.map
nhds
β€”Topology.IsEmbedding.map_nhds_of_mem
isEmbedding
IsOpen.mem_nhds
isOpen_range
Set.mem_range_self
of_comp πŸ“–β€”Topology.IsOpenEmbeddingβ€”β€”of_comp_iff
of_comp_iff πŸ“–β€”Topology.IsOpenEmbeddingβ€”β€”Topology.IsEmbedding.continuous_iff
toIsEmbedding
Function.Injective.of_comp_iff
Topology.IsEmbedding.injective
isOpenMap_iff
of_continuous_injective_isOpenMap πŸ“–mathematicalContinuous
IsOpenMap
Topology.IsOpenEmbeddingβ€”le_antisymm
Filter.Tendsto.le_comap
Continuous.tendsto
Filter.comap_mono
IsOpenMap.nhds_le
Filter.comap_map
of_isEmbedding πŸ“–mathematicalTopology.IsEmbeddingTopology.IsOpenEmbeddingβ€”Topology.IsEmbedding.isOpenEmbedding_of_surjective
of_isEmbedding_isOpenMap πŸ“–mathematicalTopology.IsEmbedding
IsOpenMap
Topology.IsOpenEmbeddingβ€”IsOpenMap.isOpen_range
of_isEmpty πŸ“–mathematicalβ€”Topology.IsOpenEmbeddingβ€”of_isEmbedding_isOpenMap
Topology.IsEmbedding.of_subsingleton
IsEmpty.instSubsingleton
IsOpenMap.of_isEmpty
tendsto_nhds_iff πŸ“–mathematicalTopology.IsOpenEmbeddingFilter.Tendsto
nhds
β€”Topology.IsEmbedding.tendsto_nhds_iff
isEmbedding
tendsto_nhds_iff' πŸ“–mathematicalTopology.IsOpenEmbeddingFilter.Tendsto
nhds
β€”Filter.Tendsto.eq_1
Filter.map_map
map_nhds_eq

Topology.IsQuotientMap

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–β€”Topology.IsQuotientMapβ€”β€”surjective
eq_coinduced
coinduced_compose
continuous πŸ“–mathematicalTopology.IsQuotientMapContinuousβ€”continuous_iff
continuous_id
continuous_iff πŸ“–mathematicalTopology.IsQuotientMapContinuousβ€”continuous_iff_coinduced_le
eq_coinduced
coinduced_compose
id πŸ“–mathematicalβ€”Topology.IsQuotientMapβ€”coinduced_id
isClosed_preimage πŸ“–mathematicalTopology.IsQuotientMapIsClosed
Set.preimage
β€”Topology.isQuotientMap_iff_isClosed
isOpen_preimage πŸ“–mathematicalTopology.IsQuotientMapIsOpen
Set.preimage
β€”Topology.isQuotientMap_iff
of_comp πŸ“–β€”Continuous
Topology.IsQuotientMap
β€”β€”Function.Surjective.of_comp
surjective
le_antisymm
eq_coinduced
coinduced_compose
le_imp_le_of_le_of_le
coinduced_mono
Continuous.coinduced_le
le_refl
of_comp_isQuotientMap πŸ“–β€”Topology.IsQuotientMapβ€”β€”of_comp_of_eq_coinduced
eq_coinduced
of_comp_of_eq_coinduced πŸ“–β€”Topology.IsQuotientMap
TopologicalSpace.coinduced
β€”β€”Topology.isQuotientMap_iff
Function.Surjective.of_comp
surjective
TopologicalSpace.ext_iff
isOpen_coinduced
of_inverse πŸ“–mathematicalContinuousTopology.IsQuotientMapβ€”of_comp
id
Function.LeftInverse.comp_eq_id

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isClosedMap_iff_closure_image πŸ“–mathematicalβ€”IsClosedMap
Set
Set.instHasSubset
closure
Set.image
β€”IsClosedMap.closure_image_subset
isClosed_of_closure_subset
IsClosed.closure_eq
isClosedMap_iff_clusterPt πŸ“–mathematicalβ€”IsClosedMap
ClusterPt
Filter.principal
β€”Filter.map_principal
isClosedMap_iff_comap_nhdsSet_le πŸ“–mathematicalβ€”IsClosedMap
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.comap
nhdsSet
Set.preimage
β€”HasSubset.Subset.trans
Set.instIsTransSubset
subset_rfl
Set.instReflSubset
isClosedMap_iff_comap_nhds_le πŸ“–mathematicalβ€”IsClosedMap
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.comap
nhds
nhdsSet
Set.preimage
Set
Set.instSingletonSet
β€”isClosedMap_iff_comap_nhdsSet_le
nhdsSet_singleton
Set.biUnion_of_singleton
Set.preimage_iUnion
nhdsSet_iUnion
Filter.comap_iSup
iSup_congr_Prop
iSupβ‚‚_mono
isClosedMap_iff_kernImage πŸ“–mathematicalβ€”IsClosedMap
IsOpen
Set.kernImage
β€”IsClosedMap.eq_1
Function.Surjective.forall
compl_surjective
Set.kernImage_eq_compl
isClosedMap_iff_kernImage_interior πŸ“–mathematicalβ€”IsClosedMap
Set
Set.instHasSubset
Set.kernImage
interior
β€”isClosedMap_iff_closure_image
Function.Surjective.forall
compl_surjective
closure_compl
Set.kernImage_eq_compl
interior_compl
isOpenMap_iff_closure_kernImage πŸ“–mathematicalβ€”IsOpenMap
Set
Set.instHasSubset
closure
Set.kernImage
β€”isOpenMap_iff_image_interior
Function.Surjective.forall
compl_surjective
interior_compl
Set.kernImage_eq_compl
closure_compl
isOpenMap_iff_clusterPt_comap πŸ“–mathematicalβ€”IsOpenMap
ClusterPt
Filter.comap
β€”IsOpenMap.clusterPt_comap
Mathlib.Tactic.Contrapose.contrapose₁
mem_interior_iff_mem_nhds
mem_interior_iff_not_clusterPt_compl
ClusterPt.mono
Filter.comap_principal
isOpenMap_iff_image_interior πŸ“–mathematicalβ€”IsOpenMap
Set
Set.instHasSubset
Set.image
interior
β€”IsOpenMap.image_interior_subset
subset_interior_iff_isOpen
IsOpen.interior_eq
isOpenMap_iff_interior πŸ“–mathematicalβ€”IsOpenMap
Set
Set.instHasSubset
Set.image
interior
β€”isOpenMap_iff_image_interior
isOpenMap_iff_kernImage πŸ“–mathematicalβ€”IsOpenMap
IsClosed
Set.kernImage
β€”IsOpenMap.eq_1
Function.Surjective.forall
compl_surjective
Set.kernImage_eq_compl
isOpenMap_iff_nhds_le πŸ“–mathematicalβ€”IsOpenMap
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
Filter.map
β€”IsOpenMap.nhds_le
IsOpenMap.of_nhds_le

---

← Back to Index