Documentation Verification Report

Antilipschitz

πŸ“ Source: Mathlib/Topology/MetricSpace/Antilipschitz.lean

Statistics

MetricCount
DefinitionsAntilipschitzWith, k
2
TheoremscodRestrict, comap_nhds_le, comap_uniformity_le, comp, ediam_preimage_le, edist_lt_top, edist_ne_top, id, injective, isBounded_of_image2_left, isBounded_of_image2_right, isBounded_preimage, isClosedEmbedding, isClosed_range, isComplete_range, isEmbedding, isInducing, isUniformEmbedding, isUniformInducing, le_mul_dist, le_mul_ediam_image, le_mul_nndist, mul_le_dist, mul_le_edist, mul_le_nndist, of_le_mul_dist, of_le_mul_nndist, of_subsingleton, properSpace, restrict, subsingleton, subtype_coe, tendsto_cobounded, to_rightInvOn, to_rightInvOn', to_rightInverse, to_rightInverse, antilipschitzWith_iff_le_mul_dist, antilipschitzWith_iff_le_mul_nndist
39
Total41

AntilipschitzWith

Definitions

NameCategoryTheorems
k πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
codRestrict πŸ“–mathematicalAntilipschitzWith
Set
Set.instMembership
Set.Elem
instPseudoEMetricSpaceSubtype
Set.codRestrict
β€”β€”
comap_nhds_le πŸ“–mathematicalAntilipschitzWithFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.comap
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”nhds_eq_comap_uniformity
le_imp_le_of_le_of_le
le_refl
Filter.comap_mono
comap_uniformity_le
Filter.comap_comap
comap_uniformity_le πŸ“–mathematicalAntilipschitzWithFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.comap
uniformity
PseudoEMetricSpace.toUniformSpace
β€”Filter.HasBasis.le_basis_iff
Filter.HasBasis.comap
uniformity_basis_edist
ENNReal.mul_pos
ENNReal.inv_ne_zero
ENNReal.coe_ne_top
LT.lt.ne'
LE.le.trans_lt
mul_comm
ENNReal.mul_lt_of_lt_div
div_eq_mul_inv
comp πŸ“–mathematicalAntilipschitzWithNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”mul_right_mono
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
ENNReal.coe_mul
mul_assoc
ediam_preimage_le πŸ“–mathematicalAntilipschitzWithENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.ediam
Set.preimage
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
β€”Metric.ediam_le
le_imp_le_of_le_of_le
le_refl
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
Metric.edist_le_ediam_of_mem
Set.mem_preimage
edist_lt_top πŸ“–mathematicalAntilipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Top.top
instTopENNReal
β€”LE.le.trans_lt
ENNReal.mul_lt_top
ENNReal.coe_lt_top
edist_lt_top
edist_ne_top πŸ“–β€”AntilipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
β€”β€”LT.lt.ne
edist_lt_top
id πŸ“–mathematicalβ€”AntilipschitzWith
NNReal
instOneNNReal
β€”one_mul
injective πŸ“–β€”AntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
β€”β€”PseudoEMetricSpace.edist_self
MulZeroClass.mul_zero
isBounded_of_image2_left πŸ“–β€”AntilipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.image2
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
Bornology.nonempty_of_not_isBounded
isBounded_preimage
Set.image2_singleton_right
Bornology.IsBounded.subset
Set.subset_preimage_image
Set.image2_subset
subset_rfl
Set.instReflSubset
Set.singleton_subset_iff
isBounded_of_image2_right πŸ“–β€”AntilipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.image2
β€”β€”isBounded_of_image2_left
Set.image2_swap
isBounded_preimage πŸ“–mathematicalAntilipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.preimageβ€”Metric.isBounded_iff_ediam_ne_top
ne_top_of_le_ne_top
ENNReal.mul_ne_top
ENNReal.coe_ne_top
Bornology.IsBounded.ediam_ne_top
ediam_preimage_le
isClosedEmbedding πŸ“–mathematicalAntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
UniformContinuous
PseudoEMetricSpace.toUniformSpace
Topology.IsClosedEmbedding
UniformSpace.toTopologicalSpace
β€”IsUniformEmbedding.isEmbedding
isUniformEmbedding
isClosed_range
isClosed_range πŸ“–mathematicalAntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
UniformContinuous
PseudoEMetricSpace.toUniformSpace
IsClosed
UniformSpace.toTopologicalSpace
Set.range
β€”IsComplete.isClosed
EMetricSpace.instT0Space
isComplete_range
isComplete_range πŸ“–mathematicalAntilipschitzWith
UniformContinuous
PseudoEMetricSpace.toUniformSpace
IsComplete
Set.range
β€”IsUniformInducing.isComplete_range
isUniformInducing
isEmbedding πŸ“–mathematicalAntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
Continuous
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Topology.IsEmbeddingβ€”Topology.IsInducing.isEmbedding
EMetricSpace.instT0Space
isInducing
isInducing πŸ“–mathematicalAntilipschitzWith
Continuous
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Topology.IsInducingβ€”Topology.isInducing_iff_nhds
le_antisymm
Filter.Tendsto.le_comap
Continuous.tendsto
comap_nhds_le
isUniformEmbedding πŸ“–mathematicalAntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
UniformContinuous
PseudoEMetricSpace.toUniformSpace
IsUniformEmbeddingβ€”isUniformInducing
injective
isUniformInducing πŸ“–mathematicalAntilipschitzWith
UniformContinuous
PseudoEMetricSpace.toUniformSpace
IsUniformInducingβ€”le_antisymm
comap_uniformity_le
Filter.Tendsto.le_comap
le_mul_dist πŸ“–mathematicalAntilipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Real.instMul
NNReal.toReal
β€”antilipschitzWith_iff_le_mul_dist
le_mul_ediam_image πŸ“–mathematicalAntilipschitzWithENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.ediam
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
Set.image
β€”LE.le.trans
Metric.ediam_mono
Set.subset_preimage_image
ediam_preimage_le
le_mul_nndist πŸ“–mathematicalAntilipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”antilipschitzWith_iff_le_mul_nndist
mul_le_dist πŸ“–mathematicalAntilipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
Real
Real.instLE
Real.instMul
NNReal.toReal
NNReal
NNReal.instInv
Dist.dist
PseudoMetricSpace.toDist
β€”mul_le_nndist
mul_le_edist πŸ“–mathematicalAntilipschitzWithENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instInv
ENNReal.ofNNReal
EDist.edist
PseudoEMetricSpace.toEDist
β€”mul_comm
div_eq_mul_inv
ENNReal.div_le_of_le_mul'
mul_le_nndist πŸ“–mathematicalAntilipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
NNReal.instInv
NNDist.nndist
PseudoMetricSpace.toNNDist
β€”div_eq_inv_mul
NNReal.div_le_of_le_mul'
le_mul_nndist
of_le_mul_dist πŸ“–mathematicalReal
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Real.instMul
NNReal.toReal
AntilipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
β€”antilipschitzWith_iff_le_mul_dist
of_le_mul_nndist πŸ“–mathematicalNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
AntilipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
β€”antilipschitzWith_iff_le_mul_nndist
of_subsingleton πŸ“–mathematicalβ€”AntilipschitzWithβ€”PseudoEMetricSpace.edist_self
ENNReal.instCanonicallyOrderedAdd
properSpace πŸ“–mathematicalAntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
PseudoMetricSpace.toPseudoEMetricSpace
Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
ProperSpaceβ€”IsClosed.preimage
Metric.isClosed_closedBall
isBounded_preimage
Metric.isBounded_closedBall
Metric.isCompact_iff_isClosed_bounded
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.PseudoMetrizableSpace.toMetrizableSpace
MetricSpace.instT0Space
UniformSpace.pseudoMetrizableSpace
EMetric.instIsCountablyGeneratedUniformity
Function.Surjective.image_preimage
IsCompact.image
restrict πŸ“–mathematicalAntilipschitzWithSet.Elem
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
Set.restrict
β€”β€”
subsingleton πŸ“–β€”AntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
NNReal
instZeroNNReal
β€”β€”edist_le_zero
LE.le.trans_eq
MulZeroClass.zero_mul
subtype_coe πŸ“–mathematicalβ€”AntilipschitzWith
Set
Set.instMembership
instPseudoEMetricSpaceSubtype
NNReal
instOneNNReal
β€”restrict
id
tendsto_cobounded πŸ“–mathematicalAntilipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
Filter.Tendsto
Bornology.cobounded
PseudoMetricSpace.toBornology
β€”Function.Surjective.forall
compl_surjective
isBounded_preimage
to_rightInvOn πŸ“–mathematicalAntilipschitzWith
Set.RightInvOn
LipschitzWith
Set.Elem
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
Set.restrict
β€”to_rightInvOn'
restrict
Set.mapsTo_univ
to_rightInvOn' πŸ“–mathematicalAntilipschitzWith
Set.Elem
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
Set.restrict
Set.MapsTo
Set.RightInvOn
LipschitzWithβ€”Subtype.mem
to_rightInverse πŸ“–mathematicalAntilipschitzWithLipschitzWithβ€”β€”

LipschitzWith

Theorems

NameKindAssumesProvesValidatesDepends On
to_rightInverse πŸ“–mathematicalLipschitzWithAntilipschitzWithβ€”β€”

(root)

Definitions

NameCategoryTheorems
AntilipschitzWith πŸ“–MathDef
45 mathmath: ContinuousLinearEquiv.antilipschitz, LinearIsometryEquiv.antilipschitz, AntilipschitzWith.of_subsingleton, IsometryClass.antilipschitz, AntilipschitzWith.id, Dilation.antilipschitz, AntilipschitzWith.of_le_mul_dist, antilipschitzWith_iff_le_mul_dist, ContinuousLinearMap.antilipschitz_of_isEmbedding, PiLp.antilipschitzWith_toLp, antilipschitzWith_iff_exists_mul_le_norm', antilipschitzWith_mul_right, LinearMap.exists_antilipschitzWith, antilipschitzWith_iff_le_mul_nndist, Complex.antilipschitz_equivRealProd, AddMonoidHomClass.antilipschitz_of_bound, WithLp.prod_antilipschitzWith_toLp, ContinuousLinearMap.isClosed_range_iff_antilipschitz_of_injective, SemilinearIsometryClass.antilipschitz, ApproximatesLinearOn.antilipschitz, PiLp.antilipschitzWith_ofLp, ContinuousLinearMap.antilipschitz_of_injective_of_isClosed_range, AntilipschitzWith.subtype_coe, MonoidHomClass.antilipschitz_of_bound, LipschitzWith.to_rightInverse, LinearIsometry.antilipschitz, antilipschitzWith_mul_left, ContinuousLinearMap.antilipschitz_of_bound, Isometry.antilipschitz, Unitization.antilipschitzWith_addEquiv, antilipschitzWith_inv_iff, AffineIsometryEquiv.antilipschitz, LinearMap.antilipschitz_of_comap_nhds_le, AffineIsometry.antilipschitz, antilipschitzWith_neg_iff, AffineMap.antilipschitzWith_of_finiteDimensional, antilipschitzWith_lineMap, LinearMap.injective_iff_antilipschitz, ContinuousLinearMap.bijective_iff_dense_range_and_antilipschitz, NormedAddGroupHom.antilipschitz_of_norm_ge, antilipschitzWith_iff_exists_mul_le_norm, ContinuousLinearMap.antilipschitz_of_forall_le_inner_map, AntilipschitzWith.of_le_mul_nndist, WithLp.prod_antilipschitzWith_ofLp, IsCoercive.antilipschitz

Theorems

NameKindAssumesProvesValidatesDepends On
antilipschitzWith_iff_le_mul_dist πŸ“–mathematicalβ€”AntilipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Real.instMul
NNReal.toReal
β€”β€”
antilipschitzWith_iff_le_mul_nndist πŸ“–mathematicalβ€”AntilipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”edist_nndist

---

← Back to Index