Bounded
π Source: Mathlib/Topology/MetricSpace/Bounded.lean
Statistics
Bornology.IsBounded
Theorems
Bornology.IsCobounded
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
closedBall_compl_subset π | mathematical | Bornology.IsCoboundedPseudoMetricSpace.toBornology | SetSet.instHasSubsetCompl.complSet.instComplMetric.closedBall | β | Metric.isCobounded_iff_closedBall_compl_subset |
CauchySeq
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isBounded_range π | mathematical | CauchySeqPseudoMetricSpace.toUniformSpaceNat.instPreorder | Bornology.IsBoundedPseudoMetricSpace.toBornologySet.range | β | Metric.isBounded_range_of_cauchy_map_cofiniteNat.cofinite_eq_atTop |
Continuous
Theorems
IsCompact
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isBounded π | mathematical | IsCompactUniformSpace.toTopologicalSpacePseudoMetricSpace.toUniformSpace | Bornology.IsBoundedPseudoMetricSpace.toBornology | β | TotallyBounded.isBoundedtotallyBounded |
IsComplete
Theorems
IsOrderBornology
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
of_isCompactIcc π | mathematical | BddBelowPreorder.toLEMetric.closedBallBddAbove | IsOrderBornologyPseudoMetricSpace.toBornology | β | Metric.isBounded_iff_subset_closedBallBddBelow.monoBddAbove.monoMetric.isBounded_of_bddAbove_of_bddBelow |
Mathlib.Meta.Positivity
Definitions
| Name | Category | Theorems |
|---|---|---|
evalDiam π | CompOp | β |
Metric
Definitions
Theorems
Ordnode
Definitions
| Name | Category | Theorems |
|---|---|---|
Bounded π | MathDef |
Set
Definitions
TotallyBounded
Theorems
(root)
Theorems
---