Documentation Verification Report

Bounded

πŸ“ Source: Mathlib/Topology/MetricSpace/Bounded.lean

Statistics

MetricCount
DefinitionsevalDiam, diam, Bounded, Bounded
4
Theoremsclosure, ediam_ne_top, isCompact_closure, subset_ball, subset_ball_lt, subset_closedBall, subset_closedBall_lt, closedBall_compl_subset, isBounded_range, exists_forall_ge_of_isBounded, exists_forall_le_of_isBounded, isBounded, nonempty_iInter_of_nonempty_biInter, of_isCompactIcc, closedBall_compl_subset_of_mem_cocompact, cobounded_eq_cocompact, cobounded_le_cocompact, comap_dist_left_atTop, comap_dist_right_atTop, compactSpace_iff_isBounded_univ, diam_ball, diam_closedBall, diam_empty, diam_eq_zero_of_unbounded, diam_le_of_forall_dist_le, diam_le_of_forall_dist_le_of_nonempty, diam_le_of_subset_closedBall, diam_mono, diam_nonneg, diam_one, diam_pair, diam_pos, diam_singleton, diam_subsingleton, diam_triple, diam_union, diam_union', diam_univ_of_noncompact, diam_zero, disjoint_cobounded_nhds, disjoint_cobounded_nhdsSet, disjoint_nhdsSet_cobounded, disjoint_nhds_cobounded, dist_le_diam_of_mem, dist_le_diam_of_mem', ediam_eq_top_iff_unbounded, ediam_le_of_forall_dist_le, ediam_of_unbounded, ediam_univ_eq_top_iff_noncompact, ediam_univ_of_noncompact, exists_isBounded_image_of_tendsto, exists_isOpen_isBounded_image_inter_of_isCompact_of_continuousOn, exists_isOpen_isBounded_image_inter_of_isCompact_of_forall_continuousWithinAt, exists_isOpen_isBounded_image_of_isCompact_of_continuousOn, exists_isOpen_isBounded_image_of_isCompact_of_forall_continuousAt, finite_isBounded_inter_isClosed, hasAntitoneBasis_cobounded_compl_ball, hasAntitoneBasis_cobounded_compl_closedBall, hasBasis_cobounded_compl_ball, hasBasis_cobounded_compl_closedBall, isBounded_Icc, isBounded_Ico, isBounded_Ioc, isBounded_Ioo, isBounded_ball, isBounded_closedBall, isBounded_closure_iff, isBounded_closure_of_isBounded, isBounded_iff_ediam_ne_top, isBounded_iff_subset_ball, isBounded_iff_subset_closedBall, isBounded_image_iff, isBounded_of_abs_le, isBounded_of_abs_lt, isBounded_of_bddAbove_of_bddBelow, isBounded_of_compactSpace, isBounded_range_iff, isBounded_range_of_cauchy_map_cofinite, isBounded_range_of_tendsto, isBounded_range_of_tendsto_cofinite, isBounded_range_of_tendsto_cofinite_uniformity, isBounded_sphere, isCobounded_iff_closedBall_compl_subset, isCompact_iff_isClosed_bounded, isCompact_of_isClosed_isBounded, mem_cocompact_iff_closedBall_compl_subset, mem_cocompact_of_closedBall_compl_subset, nonempty_iInter_of_nonempty_biInter, tendsto_dist_left_atTop_iff, tendsto_dist_left_cobounded_atTop, tendsto_dist_right_atTop_iff, tendsto_dist_right_cobounded_atTop, isBounded, comap_dist_left_atTop_eq_cocompact, tendsto_cocompact_of_tendsto_dist_comp_atTop, tendsto_dist_left_cocompact_atTop, tendsto_dist_right_cocompact_atTop, totallyBounded_Icc, totallyBounded_Ico, totallyBounded_Ioc, totallyBounded_Ioo
101
Total105

Bornology.IsBounded

Theorems

NameKindAssumesProvesValidatesDepends On
closure πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”Metric.isBounded_closure_of_isBounded
ediam_ne_top πŸ“–β€”Bornology.IsBounded
PseudoMetricSpace.toBornology
β€”β€”Metric.isBounded_iff_ediam_ne_top
isCompact_closure πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
IsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
closure
β€”Metric.isCompact_of_isClosed_isBounded
isClosed_closure
closure
subset_ball πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
Set
Set.instHasSubset
Metric.ball
β€”subset_ball_lt
subset_ball_lt πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
Real
Real.instLT
Set
Set.instHasSubset
Metric.ball
β€”subset_closedBall
LE.le.trans_lt
le_max_right
lt_add_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
HasSubset.Subset.trans
Set.instIsTransSubset
Metric.closedBall_subset_ball
le_max_left
subset_closedBall πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
Set
Set.instHasSubset
Metric.closedBall
β€”Metric.isBounded_iff_subset_closedBall
subset_closedBall_lt πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
Real
Real.instLT
Set
Set.instHasSubset
Metric.closedBall
β€”subset_ball_lt
HasSubset.Subset.trans
Set.instIsTransSubset
Metric.ball_subset_closedBall

Bornology.IsCobounded

Theorems

NameKindAssumesProvesValidatesDepends On
closedBall_compl_subset πŸ“–mathematicalBornology.IsCobounded
PseudoMetricSpace.toBornology
Set
Set.instHasSubset
Compl.compl
Set.instCompl
Metric.closedBall
β€”Metric.isCobounded_iff_closedBall_compl_subset

CauchySeq

Theorems

NameKindAssumesProvesValidatesDepends On
isBounded_range πŸ“–mathematicalCauchySeq
PseudoMetricSpace.toUniformSpace
Nat.instPreorder
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.range
β€”Metric.isBounded_range_of_cauchy_map_cofinite
Nat.cofinite_eq_atTop

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
exists_forall_ge_of_isBounded πŸ“–β€”Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
setOf
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”β€”exists_forall_le_of_isBounded
instOrderClosedTopologyOrderDual
exists_forall_le_of_isBounded πŸ“–β€”Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
setOf
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”β€”exists_forall_le'
instClosedIicTopology
Filter.mem_cocompact'
Metric.isCompact_of_isClosed_isBounded
isClosed_le
continuous_const
Filter.mp_mem
Filter.univ_mem'
LT.lt.le

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
isBounded πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
β€”TotallyBounded.isBounded
totallyBounded

IsComplete

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_iInter_of_nonempty_biInter πŸ“–β€”IsComplete
PseudoMetricSpace.toUniformSpace
IsClosed
UniformSpace.toTopologicalSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.Nonempty
Set.iInter
Filter.Tendsto
Real
Metric.diam
Filter.atTop
Nat.instPreorder
nhds
Real.pseudoMetricSpace
Real.instZero
β€”β€”Set.mem_of_subset_of_mem
cauchySeq_of_le_tendsto_0
Metric.dist_le_diam_of_mem
cauchySeq_tendsto_of_isComplete
zero_le
Nat.instCanonicallyOrderedAdd
Set.mem_iInter
IsClosed.mem_of_tendsto
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.mp_mem
Filter.Ici_mem_atTop
Filter.univ_mem'

IsOrderBornology

Theorems

NameKindAssumesProvesValidatesDepends On
of_isCompactIcc πŸ“–mathematicalBddBelow
Preorder.toLE
Metric.closedBall
BddAbove
IsOrderBornology
PseudoMetricSpace.toBornology
β€”Metric.isBounded_iff_subset_closedBall
BddBelow.mono
BddAbove.mono
Metric.isBounded_of_bddAbove_of_bddBelow

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalDiam πŸ“–CompOpβ€”

Metric

Definitions

NameCategoryTheorems
diam πŸ“–CompOp
64 mathmath: IsometryClass.diam_image, LinearIsometry.diam_image, diam_mono, diam_triple, diam_smulβ‚€, MeasureTheory.SeparableSpace.exists_measurable_partition_diam_le, diam_closure, diam_le_of_subset_closedBall, IsometryEquiv.diam_image, convexHull_diam, diam_eq_zero_of_unbounded, diam_stdSimplex, diam_closedBall_eq, Isometry.diam_range, IsometryClass.diam_range, LinearIsometryEquiv.diam_image, Real.diam_Ioo, dist_le_infDist_add_diam, diam_thickening_le, AffineIsometry.diam_image, diam_stdSimplex_of_subsingleton, diam_ball, diam_nonneg, diam_closedBall, diam_stdSimplex_le, AffineIsometryEquiv.diam_image, Real.diam_eq, hausdorffDist_le_diam, diam_ball_eq, diam_pair, diam_smul, dist_le_diam_of_mem, IsometryEquiv.diam_preimage, diam_singleton, BoxIntegral.Box.diam_Icc_le_of_distortion_le, AffineIsometry.diam_range, LinearIsometry.diam_range, BoxIntegral.TaggedPrepartition.IsSubordinate.diam_le, diam_sphere_eq, diam_le_of_forall_dist_le_of_nonempty, Isometry.diam_image, diam_union', diam_vadd, Dilation.diam_range, Dilation.diam_image, diam_pos, Real.diam_Ico, diam_subsingleton, SemilinearIsometryClass.diam_image, diam_empty, dist_le_diam_of_mem', diam_zero, diam_one, IsometryEquiv.diam_univ, BoxIntegral.unitPartition.diam_boxIcc, LipschitzWith.diam_image_le, Real.diam_Ioc, SemilinearIsometryClass.diam_range, diam_le_of_forall_dist_le, diam_union, diam_cthickening_le, diam_univ_of_noncompact, Real.diam_Icc, GromovHausdorff.HD_candidatesBDist_le

Theorems

NameKindAssumesProvesValidatesDepends On
closedBall_compl_subset_of_mem_cocompact πŸ“–mathematicalSet
Filter
Filter.instMembership
Filter.cocompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Set.instHasSubset
Compl.compl
Set.instCompl
closedBall
β€”Bornology.IsCobounded.closedBall_compl_subset
cobounded_le_cocompact
cobounded_eq_cocompact πŸ“–mathematicalβ€”Bornology.cobounded
PseudoMetricSpace.toBornology
Filter.cocompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Bornology.cobounded_eq_bot
BoundedSpace.of_finite
Finite.of_subsingleton
Filter.cocompact_eq_bot
Finite.compactSpace
LE.le.antisymm
cobounded_le_cocompact
Nontrivial.to_nonempty
Filter.HasBasis.ge_iff
hasBasis_cobounded_compl_closedBall
IsCompact.compl_mem_cocompact
ProperSpace.isCompact_closedBall
cobounded_le_cocompact πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Bornology.cobounded
PseudoMetricSpace.toBornology
Filter.cocompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”Filter.HasBasis.ge_iff
Filter.hasBasis_cocompact
IsCompact.isBounded
comap_dist_left_atTop πŸ“–mathematicalβ€”Filter.comap
Real
Dist.dist
PseudoMetricSpace.toDist
Filter.atTop
Real.instPreorder
Bornology.cobounded
PseudoMetricSpace.toBornology
β€”dist_comm
comap_dist_right_atTop
comap_dist_right_atTop πŸ“–mathematicalβ€”Filter.comap
Real
Dist.dist
PseudoMetricSpace.toDist
Filter.atTop
Real.instPreorder
Bornology.cobounded
PseudoMetricSpace.toBornology
β€”Filter.HasBasis.eq_of_same_basis
Filter.HasBasis.comap
Filter.atTop_basis
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
hasBasis_cobounded_compl_ball
compactSpace_iff_isBounded_univ πŸ“–mathematicalβ€”CompactSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.univ
β€”isBounded_of_compactSpace
isCompact_of_isClosed_isBounded
isClosed_univ
diam_ball πŸ“–mathematicalReal
Real.instLE
Real.instZero
diam
ball
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”diam_le_of_subset_closedBall
ball_subset_closedBall
diam_closedBall πŸ“–mathematicalReal
Real.instLE
Real.instZero
diam
closedBall
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”diam_le_of_subset_closedBall
Set.Subset.rfl
diam_empty πŸ“–mathematicalβ€”diam
Set
Set.instEmptyCollection
Real
Real.instZero
β€”diam_subsingleton
Set.subsingleton_empty
diam_eq_zero_of_unbounded πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
diam
Real
Real.instZero
β€”diam.eq_1
ediam_of_unbounded
ENNReal.toReal_top
diam_le_of_forall_dist_le πŸ“–mathematicalReal
Real.instLE
Real.instZero
Dist.dist
PseudoMetricSpace.toDist
diamβ€”ENNReal.toReal_le_of_le_ofReal
ediam_le_of_forall_dist_le
diam_le_of_forall_dist_le_of_nonempty πŸ“–mathematicalSet.Nonempty
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
diamβ€”le_trans
dist_nonneg
diam_le_of_forall_dist_le
diam_le_of_subset_closedBall πŸ“–mathematicalReal
Real.instLE
Real.instZero
Set
Set.instHasSubset
closedBall
diam
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”diam_le_of_forall_dist_le
Nat.instAtLeastTwoHAddOfNat
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
zero_le_two
Real.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
dist_triangle_right
add_le_add
covariant_swap_add_of_covariant_add
mul_comm
mul_two
diam_mono πŸ“–mathematicalSet
Set.instHasSubset
Bornology.IsBounded
PseudoMetricSpace.toBornology
Real
Real.instLE
diam
β€”ENNReal.toReal_mono
Bornology.IsBounded.ediam_ne_top
ediam_mono
diam_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
diam
β€”ENNReal.toReal_nonneg
diam_one πŸ“–mathematicalβ€”diam
Set
Set.one
Real
Real.instZero
β€”diam_singleton
diam_pair πŸ“–mathematicalβ€”diam
Set
Set.instInsert
Set.instSingletonSet
Dist.dist
PseudoMetricSpace.toDist
β€”ediam_pair
dist_edist
diam_pos πŸ“–mathematicalSet.Nontrivial
Bornology.IsBounded
PseudoMetricSpace.toBornology
MetricSpace.toPseudoMetricSpace
Real
Real.instLT
Real.instZero
diam
β€”LT.lt.trans_le
dist_pos
dist_le_diam_of_mem
diam_singleton πŸ“–mathematicalβ€”diam
Set
Set.instSingletonSet
Real
Real.instZero
β€”diam_subsingleton
Set.subsingleton_singleton
diam_subsingleton πŸ“–mathematicalSet.Subsingletondiam
Real
Real.instZero
β€”ediam_subsingleton
diam_triple πŸ“–mathematicalβ€”diam
Set
Set.instInsert
Set.instSingletonSet
Real
Real.instMax
Dist.dist
PseudoMetricSpace.toDist
β€”ediam_triple
dist_edist
ENNReal.toReal_max
ne_of_lt
max_lt
edist_lt_top
diam_union πŸ“–mathematicalSet
Set.instMembership
Real
Real.instLE
diam
Set.instUnion
Real.instAdd
Dist.dist
PseudoMetricSpace.toDist
β€”dist_edist
le_imp_le_of_le_of_le
ENNReal.toReal_le_add'
ediam_union_le_add_edist
top_unique
ediam_mono
Set.subset_union_left
Set.subset_union_right
le_refl
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
ENNReal.toReal_add_le
diam_union' πŸ“–mathematicalSet.Nonempty
Set
Set.instInter
Real
Real.instLE
diam
Set.instUnion
Real.instAdd
β€”dist_self
add_zero
diam_union
diam_univ_of_noncompact πŸ“–mathematicalβ€”diam
Set.univ
Real
Real.instZero
β€”ediam_univ_of_noncompact
diam_zero πŸ“–mathematicalβ€”diam
Set
Set.zero
Real
Real.instZero
β€”diam_singleton
disjoint_cobounded_nhds πŸ“–mathematicalβ€”Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
Bornology.cobounded
PseudoMetricSpace.toBornology
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”Disjoint.symm
disjoint_nhds_cobounded
disjoint_cobounded_nhdsSet πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
Bornology.cobounded
PseudoMetricSpace.toBornology
nhdsSet
β€”Disjoint.symm
disjoint_nhdsSet_cobounded
disjoint_nhdsSet_cobounded πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhdsSet
Bornology.cobounded
PseudoMetricSpace.toBornology
β€”IsCompact.disjoint_nhdsSet_left
disjoint_nhds_cobounded
disjoint_nhds_cobounded πŸ“–mathematicalβ€”Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Bornology.cobounded
PseudoMetricSpace.toBornology
β€”Filter.disjoint_of_disjoint_of_mem
disjoint_compl_right
ball_mem_nhds
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
isBounded_ball
dist_le_diam_of_mem πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
Set
Set.instMembership
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
diam
β€”dist_le_diam_of_mem'
Bornology.IsBounded.ediam_ne_top
dist_le_diam_of_mem' πŸ“–mathematicalSet
Set.instMembership
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
diam
β€”diam.eq_1
dist_edist
ENNReal.toReal_mono
edist_le_ediam_of_mem
ediam_eq_top_iff_unbounded πŸ“–mathematicalβ€”ediam
PseudoMetricSpace.toPseudoEMetricSpace
Top.top
ENNReal
instTopENNReal
Bornology.IsBounded
PseudoMetricSpace.toBornology
β€”Iff.not_left
isBounded_iff_ediam_ne_top
ediam_le_of_forall_dist_le πŸ“–mathematicalReal
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ediam
PseudoMetricSpace.toPseudoEMetricSpace
ENNReal.ofReal
β€”ediam_le
ENNReal.ofReal_le_ofReal
edist_dist
ediam_of_unbounded πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
ediam
PseudoMetricSpace.toPseudoEMetricSpace
Top.top
ENNReal
instTopENNReal
β€”ediam_eq_top_iff_unbounded
ediam_univ_eq_top_iff_noncompact πŸ“–mathematicalβ€”ediam
PseudoMetricSpace.toPseudoEMetricSpace
Set.univ
Top.top
ENNReal
instTopENNReal
NoncompactSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”not_compactSpace_iff
compactSpace_iff_isBounded_univ
isBounded_iff_ediam_ne_top
ediam_univ_of_noncompact πŸ“–mathematicalβ€”ediam
PseudoMetricSpace.toPseudoEMetricSpace
Set.univ
Top.top
ENNReal
instTopENNReal
β€”ediam_univ_eq_top_iff_noncompact
exists_isBounded_image_of_tendsto πŸ“–mathematicalFilter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Set
Filter
Filter.instMembership
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.image
β€”Filter.HasBasis.disjoint_iff_left
Filter.HasBasis.map
Filter.basis_sets
Disjoint.mono_left
disjoint_nhds_cobounded
exists_isOpen_isBounded_image_inter_of_isCompact_of_continuousOn πŸ“–mathematicalIsCompact
Set
Set.instHasSubset
ContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
IsOpen
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.image
Set.instInter
β€”exists_isOpen_isBounded_image_inter_of_isCompact_of_forall_continuousWithinAt
exists_isOpen_isBounded_image_inter_of_isCompact_of_forall_continuousWithinAt πŸ“–mathematicalIsCompact
ContinuousWithinAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Set
Set.instHasSubset
IsOpen
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.image
Set.instInter
β€”disjoint_assoc
inf_comm
IsCompact.disjoint_nhdsSet_left
disjoint_left_comm
Filter.Tendsto.disjoint
Filter.tendsto_comap
disjoint_cobounded_nhds
Filter.HasBasis.disjoint_iff
Filter.HasBasis.inf_principal
hasBasis_nhdsSet
Filter.HasBasis.comap
Filter.basis_sets
Bornology.IsBounded.subset
Bornology.isBounded_compl_iff
Set.image_subset_iff
Set.preimage_compl
Set.subset_compl_iff_disjoint_right
exists_isOpen_isBounded_image_of_isCompact_of_continuousOn πŸ“–mathematicalIsCompact
IsOpen
Set
Set.instHasSubset
ContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.image
β€”exists_isOpen_isBounded_image_of_isCompact_of_forall_continuousAt
ContinuousOn.continuousAt
IsOpen.mem_nhds
exists_isOpen_isBounded_image_of_isCompact_of_forall_continuousAt πŸ“–mathematicalIsCompact
ContinuousAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Set
Set.instHasSubset
IsOpen
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.image
β€”Set.inter_univ
exists_isOpen_isBounded_image_inter_of_isCompact_of_forall_continuousWithinAt
finite_isBounded_inter_isClosed πŸ“–mathematicalIsDiscrete
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.Finite
Set
Set.instInter
β€”Set.Finite.subset
IsCompact.finite
IsCompact.inter_right
Bornology.IsBounded.isCompact_closure
IsDiscrete.mono
Set.inter_subset_right
Set.inter_subset_inter_left
subset_closure
hasAntitoneBasis_cobounded_compl_ball πŸ“–mathematicalβ€”Filter.HasAntitoneBasis
Real
Real.instPreorder
Bornology.cobounded
PseudoMetricSpace.toBornology
Compl.compl
Set
Set.instCompl
ball
β€”hasBasis_cobounded_compl_ball
LE.le.trans
hasAntitoneBasis_cobounded_compl_closedBall πŸ“–mathematicalβ€”Filter.HasAntitoneBasis
Real
Real.instPreorder
Bornology.cobounded
PseudoMetricSpace.toBornology
Compl.compl
Set
Set.instCompl
closedBall
β€”hasBasis_cobounded_compl_closedBall
LE.le.trans_lt
hasBasis_cobounded_compl_ball πŸ“–mathematicalβ€”Filter.HasBasis
Real
Bornology.cobounded
PseudoMetricSpace.toBornology
Compl.compl
Set
Set.instCompl
ball
β€”Function.Surjective.forall
compl_surjective
isBounded_iff_subset_ball
hasBasis_cobounded_compl_closedBall πŸ“–mathematicalβ€”Filter.HasBasis
Real
Bornology.cobounded
PseudoMetricSpace.toBornology
Compl.compl
Set
Set.instCompl
closedBall
β€”Function.Surjective.forall
compl_surjective
isBounded_iff_subset_closedBall
isBounded_Icc πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.Icc
β€”TotallyBounded.isBounded
totallyBounded_Icc
isBounded_Ico πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.Ico
β€”TotallyBounded.isBounded
totallyBounded_Ico
isBounded_Ioc πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.Ioc
β€”TotallyBounded.isBounded
totallyBounded_Ioc
isBounded_Ioo πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.Ioo
β€”TotallyBounded.isBounded
totallyBounded_Ioo
isBounded_ball πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
ball
β€”Bornology.IsBounded.subset
isBounded_closedBall
ball_subset_closedBall
isBounded_closedBall πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
closedBall
β€”isBounded_iff
dist_triangle_right
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
isBounded_closure_iff πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”Bornology.IsBounded.subset
subset_closure
Bornology.IsBounded.closure
isBounded_closure_of_isBounded πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”isBounded_iff
IsClosed.closure_subset
isClosed_Iic
instClosedIicTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
map_mem_closureβ‚‚
continuous_dist
isBounded_iff_ediam_ne_top πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
β€”isBounded_iff
ne_top_of_le_ne_top
ENNReal.ofReal_ne_top
ediam_le_of_forall_dist_le
dist_le_diam_of_mem'
isBounded_iff_subset_ball πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
Set
Set.instHasSubset
ball
β€”Bornology.IsBounded.subset_ball
Bornology.IsBounded.subset
isBounded_ball
isBounded_iff_subset_closedBall πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
Set
Set.instHasSubset
closedBall
β€”Set.mem_insert
isBounded_iff
Bornology.IsBounded.insert
Bornology.IsBounded.subset
isBounded_closedBall
isBounded_image_iff πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.image
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
β€”isBounded_iff
isBounded_of_abs_le πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
setOf
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddCommGroup.toAddGroup
β€”Set.ext
isBounded_Icc
isBounded_of_abs_lt πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddCommGroup.toAddGroup
β€”Set.ext
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
isBounded_Ioo
isBounded_of_bddAbove_of_bddBelow πŸ“–mathematicalBddAbove
Preorder.toLE
BddBelow
Bornology.IsBounded
PseudoMetricSpace.toBornology
β€”Bornology.IsBounded.subset
isBounded_Icc
Set.mem_Icc
isBounded_of_compactSpace πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
β€”Bornology.IsBounded.subset
IsCompact.isBounded
isCompact_univ
Set.subset_univ
isBounded_range_iff πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.range
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
β€”isBounded_iff
isBounded_range_of_cauchy_map_cofinite πŸ“–mathematicalCauchy
PseudoMetricSpace.toUniformSpace
Filter.map
Filter.cofinite
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.range
β€”isBounded_range_of_tendsto_cofinite_uniformity
cauchy_map_iff
isBounded_range_of_tendsto πŸ“–mathematicalFilter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.range
β€”CauchySeq.isBounded_range
Filter.Tendsto.cauchySeq
isBounded_range_of_tendsto_cofinite πŸ“–mathematicalFilter.Tendsto
Filter.cofinite
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.range
β€”isBounded_range_of_tendsto_cofinite_uniformity
Filter.Tendsto.mono_right
Filter.Tendsto.prodMap
Eq.trans_le
nhds_prod_eq
nhds_le_uniformity
isBounded_range_of_tendsto_cofinite_uniformity πŸ“–mathematicalFilter.Tendsto
SProd.sprod
Filter
Filter.instSProd
Filter.cofinite
uniformity
PseudoMetricSpace.toUniformSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.range
β€”Filter.HasBasis.tendsto_iff
Filter.HasBasis.prod_self
Filter.hasBasis_cofinite
uniformity_basis_dist
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Set.image_union_image_compl_eq_range
Bornology.IsBounded.union
Set.Finite.isBounded
Set.Finite.image
isBounded_image_iff
le_of_lt
isBounded_sphere πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
sphere
β€”Bornology.IsBounded.subset
isBounded_closedBall
sphere_subset_closedBall
isCobounded_iff_closedBall_compl_subset πŸ“–mathematicalβ€”Bornology.IsCobounded
PseudoMetricSpace.toBornology
Set
Set.instHasSubset
Compl.compl
Set.instCompl
closedBall
β€”Bornology.isBounded_compl_iff
isBounded_iff_subset_closedBall
Set.compl_subset_comm
isCompact_iff_isClosed_bounded πŸ“–mathematicalβ€”IsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
IsClosed
Bornology.IsBounded
PseudoMetricSpace.toBornology
β€”IsCompact.isClosed
IsCompact.isBounded
isCompact_of_isClosed_isBounded
isCompact_of_isClosed_isBounded πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
IsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”Set.eq_empty_or_nonempty
isCompact_empty
Bornology.IsBounded.subset_closedBall
IsCompact.of_isClosed_subset
ProperSpace.isCompact_closedBall
mem_cocompact_iff_closedBall_compl_subset πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
Filter.cocompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Set.instHasSubset
Compl.compl
Set.instCompl
closedBall
β€”closedBall_compl_subset_of_mem_cocompact
mem_cocompact_of_closedBall_compl_subset
mem_cocompact_of_closedBall_compl_subset πŸ“–mathematicalSet
Set.instHasSubset
Compl.compl
Set.instCompl
closedBall
Filter
Filter.instMembership
Filter.cocompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”Filter.mem_cocompact
ProperSpace.isCompact_closedBall
nonempty_iInter_of_nonempty_biInter πŸ“–β€”IsClosed
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.Nonempty
Set.iInter
Filter.Tendsto
Real
diam
Filter.atTop
Nat.instPreorder
nhds
Real.pseudoMetricSpace
Real.instZero
β€”β€”IsComplete.nonempty_iInter_of_nonempty_biInter
IsClosed.isComplete
tendsto_dist_left_atTop_iff πŸ“–mathematicalβ€”Filter.Tendsto
Real
Dist.dist
PseudoMetricSpace.toDist
Filter.atTop
Real.instPreorder
Bornology.cobounded
PseudoMetricSpace.toBornology
β€”dist_comm
tendsto_dist_left_cobounded_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
Dist.dist
PseudoMetricSpace.toDist
Bornology.cobounded
PseudoMetricSpace.toBornology
Filter.atTop
Real.instPreorder
β€”Filter.tendsto_iff_comap
Eq.ge
comap_dist_left_atTop
tendsto_dist_right_atTop_iff πŸ“–mathematicalβ€”Filter.Tendsto
Real
Dist.dist
PseudoMetricSpace.toDist
Filter.atTop
Real.instPreorder
Bornology.cobounded
PseudoMetricSpace.toBornology
β€”comap_dist_right_atTop
Filter.tendsto_comap_iff
tendsto_dist_right_cobounded_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
Dist.dist
PseudoMetricSpace.toDist
Bornology.cobounded
PseudoMetricSpace.toBornology
Filter.atTop
Real.instPreorder
β€”Filter.tendsto_iff_comap
Eq.ge
comap_dist_right_atTop

Ordnode

Definitions

NameCategoryTheorems
Bounded πŸ“–MathDef
2 mathmath: Valid'.ord, Bounded.dual_iff

Set

Definitions

NameCategoryTheorems
Bounded πŸ“–MathDef
45 mathmath: bounded_ge_Ioc, bounded_lt_Iio, bounded_le_Ioc, bounded_gt_Ioi, bounded_gt_inter_ge, Cardinal.mk_bounded_subset, bounded_ge_inter_not_ge, bounded_lt_inter_not_lt, bounded_le_inter_not_le, bounded_gt_Ioo, Ordinal.lt_cof_type, Ordinal.bounded_singleton, not_bounded_iff, bounded_ge_Ioo, bounded_ge_inter_ge, bounded_gt_inter_gt, bounded_gt_Icc, bounded_le_Iio, bounded_lt_Ioo, bounded_ge_Icc, bounded_lt_inter_lt, not_unbounded_iff, bounded_gt_Ico, bounded_ge_Ico, bounded_le_Icc, bounded_le_Iic, bounded_ge_Ici, bounded_ge_iff_bounded_gt, bounded_le_Ioo, bounded_lt_Ico, bounded_le_inter_lt, bounded_gt_Ici, bounded_lt_Ioc, bounded_le_inter_le, bounded_ge_inter_gt, bounded_gt_Ioc, bounded_le_iff_bounded_lt, bounded_inter_not, bounded_le_Ico, bounded_lt_inter_le, bounded_gt_inter_not_gt, bounded_lt_Iic, bounded_lt_Icc, bounded_self, bounded_ge_Ioi

TotallyBounded

Theorems

NameKindAssumesProvesValidatesDepends On
isBounded πŸ“–mathematicalTotallyBounded
PseudoMetricSpace.toUniformSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
β€”Metric.totallyBounded_iff
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Bornology.IsBounded.subset
Bornology.isBounded_biUnion
Metric.isBounded_ball

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
comap_dist_left_atTop_eq_cocompact πŸ“–mathematicalβ€”Filter.comap
Real
Dist.dist
PseudoMetricSpace.toDist
Filter.atTop
Real.instPreorder
Filter.cocompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”Metric.comap_dist_left_atTop
Metric.cobounded_eq_cocompact
tendsto_cocompact_of_tendsto_dist_comp_atTop πŸ“–mathematicalFilter.Tendsto
Real
Dist.dist
PseudoMetricSpace.toDist
Filter.atTop
Real.instPreorder
Filter.cocompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”Filter.Tendsto.mono_right
Metric.tendsto_dist_right_atTop_iff
Metric.cobounded_le_cocompact
tendsto_dist_left_cocompact_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
Dist.dist
PseudoMetricSpace.toDist
Filter.cocompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Filter.atTop
Real.instPreorder
β€”Filter.Tendsto.mono_left
Metric.tendsto_dist_left_cobounded_atTop
Eq.ge
Metric.cobounded_eq_cocompact
tendsto_dist_right_cocompact_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
Dist.dist
PseudoMetricSpace.toDist
Filter.cocompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Filter.atTop
Real.instPreorder
β€”Filter.Tendsto.mono_left
Metric.tendsto_dist_right_cobounded_atTop
Eq.ge
Metric.cobounded_eq_cocompact
totallyBounded_Icc πŸ“–mathematicalβ€”TotallyBounded
Set.Icc
β€”IsCompact.totallyBounded
CompactIccSpace.isCompact_Icc
totallyBounded_Ico πŸ“–mathematicalβ€”TotallyBounded
Set.Ico
β€”TotallyBounded.subset
Set.Ico_subset_Icc_self
totallyBounded_Icc
totallyBounded_Ioc πŸ“–mathematicalβ€”TotallyBounded
Set.Ioc
β€”TotallyBounded.subset
Set.Ioc_subset_Icc_self
totallyBounded_Icc
totallyBounded_Ioo πŸ“–mathematicalβ€”TotallyBounded
Set.Ioo
β€”TotallyBounded.subset
Set.Ioo_subset_Icc_self
totallyBounded_Icc

---

← Back to Index