Documentation Verification Report

CantorScheme

πŸ“ Source: Mathlib/Topology/MetricSpace/CantorScheme.lean

Statistics

MetricCount
DefinitionsAntitone, ClosureAntitone, VanishingDiam, inducedMap
4
TheoremsclosureAntitone, antitone, map_of_vanishingDiam, map_injective, dist_lt, map_continuous, map_mem
7
Total11

CantorScheme

Definitions

NameCategoryTheorems
Antitone πŸ“–MathDef
1 mathmath: ClosureAntitone.antitone
ClosureAntitone πŸ“–MathDef
1 mathmath: Antitone.closureAntitone
VanishingDiam πŸ“–MathDefβ€”
inducedMap πŸ“–CompOp
4 mathmath: ClosureAntitone.map_of_vanishingDiam, Disjoint.map_injective, map_mem, VanishingDiam.map_continuous

Theorems

NameKindAssumesProvesValidatesDepends On
map_mem πŸ“–mathematicalβ€”Set
Set.instMembership
PiNat.res
inducedMap
β€”Set.Nonempty.some_mem
Set.mem_iInter

CantorScheme.Antitone

Theorems

NameKindAssumesProvesValidatesDepends On
closureAntitone πŸ“–mathematicalCantorScheme.Antitone
IsClosed
CantorScheme.ClosureAntitoneβ€”HasSubset.Subset.trans
Set.instIsTransSubset
Eq.subset
Set.instReflSubset
IsClosed.closure_eq

CantorScheme.ClosureAntitone

Theorems

NameKindAssumesProvesValidatesDepends On
antitone πŸ“–mathematicalCantorScheme.ClosureAntitoneCantorScheme.Antitoneβ€”HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
map_of_vanishingDiam πŸ“–mathematicalCantorScheme.VanishingDiam
CantorScheme.ClosureAntitone
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Set.Nonempty
Set
CantorScheme.inducedMap
Set.univ
β€”Set.eq_univ_iff_forall
antitone_nat_of_succ_le
antitone
Metric.cauchySeq_iff
CantorScheme.VanishingDiam.dist_lt
cauchySeq_tendsto_of_complete
Set.mem_iInter
mem_closure_of_tendsto
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.eventually_atTop

CantorScheme.Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
map_injective πŸ“–mathematicalCantorScheme.DisjointSet.Elem
Set
CantorScheme.inducedMap
β€”Subtype.coe_injective
PiNat.res_injective
Mathlib.Tactic.Contrapose.contrapose₁
Set.not_disjoint_iff
PiNat.res_succ
CantorScheme.map_mem

CantorScheme.VanishingDiam

Theorems

NameKindAssumesProvesValidatesDepends On
dist_lt πŸ“–mathematicalCantorScheme.VanishingDiam
Real
Real.instLT
Real.instZero
Dist.dist
PseudoMetricSpace.toDist
β€”Nat.instAtLeastTwoHAddOfNat
ENNReal.tendsto_atTop_zero
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
ENNReal.ofReal_lt_ofReal_iff
edist_dist
lt_of_le_of_lt
Metric.edist_le_ediam_of_mem
le_refl
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
map_continuous πŸ“–mathematicalCantorScheme.VanishingDiamContinuous
Set.Elem
Set
CantorScheme.inducedMap
instTopologicalSpaceSubtype
Set.instMembership
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”Metric.continuous_iff'
dist_lt
eventually_nhds_iff
Set.mem_setOf
PiNat.cylinder_eq_res
Set.mem_preimage
CantorScheme.map_mem
Continuous.isOpen_preimage
continuous_subtype_val
PiNat.isOpen_cylinder

---

← Back to Index