Documentation Verification Report

CauSeqFilter

πŸ“ Source: Mathlib/Topology/MetricSpace/CauSeqFilter.lean

Statistics

MetricCount
Definitions0
TheoremscauchySeq, tendsto_limit, isCauSeq, completeSpace_of_cauSeq_isComplete, isCauSeq_iff_cauchySeq
5
Total5

CauSeq

Theorems

NameKindAssumesProvesValidatesDepends On
cauchySeq πŸ“–mathematicalβ€”CauchySeq
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Nat.instPreorder
IsCauSeq
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
Norm.norm
NormedField.toNorm
β€”Real.instIsStrictOrderedRing
cauchy_iff
Filter.map_neBot
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Metric.mem_uniformity_dist
cauchyβ‚‚
NormMulClass.isAbsoluteValue_norm
NormedDivisionRing.toNormMulClass
dist_eq_norm
tendsto_limit πŸ“–mathematicalβ€”Filter.Tendsto
IsCauSeq
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
NormedRing.toRing
Norm.norm
NormedRing.toNorm
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
lim
β€”Real.instIsStrictOrderedRing
tendsto_nhds
Metric.isOpen_iff
equiv_lim
dist_comm
dist_eq_norm
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat

CauchySeq

Theorems

NameKindAssumesProvesValidatesDepends On
isCauSeq πŸ“–mathematicalCauchySeq
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Nat.instPreorder
IsCauSeq
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
Norm.norm
NormedField.toNorm
β€”Real.instIsStrictOrderedRing
cauchy_iff
Metric.dist_mem_uniformity
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
dist_eq_norm
Set.mk_mem_prod
le_refl

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
completeSpace_of_cauSeq_isComplete πŸ“–mathematicalβ€”CompleteSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
β€”Real.instIsStrictOrderedRing
NormMulClass.isAbsoluteValue_norm
NormedDivisionRing.toNormMulClass
Metric.complete_of_cauchySeq_tendsto
isCauSeq_iff_cauchySeq
Metric.tendsto_atTop
CauSeq.equiv_lim
dist_eq_norm
isCauSeq_iff_cauchySeq πŸ“–mathematicalβ€”IsCauSeq
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Norm.norm
NormedField.toNorm
CauchySeq
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
Nat.instPreorder
β€”Real.instIsStrictOrderedRing
CauSeq.cauchySeq
CauchySeq.isCauSeq

---

← Back to Index