Documentation Verification Report

Cauchy

📁 Source: Mathlib/Topology/MetricSpace/Cauchy.lean

Statistics

MetricCount
Definitions0
TheoremscauchySeq_iff, cauchySeq_iff', complete_of_cauchySeq_tendsto, complete_of_convergent_controlled_sequences, exists_subseq_bounded_of_cauchySeq, uniformCauchySeqOn_iff, cauchySeq_bdd, cauchySeq_iff_le_tendsto_0, cauchySeq_of_le_tendsto_0, cauchySeq_of_le_tendsto_0'
10
Total10

Metric

Theorems

NameKindAssumesProvesValidatesDepends On
cauchySeq_iff 📖mathematicalCauchySeq
PseudoMetricSpace.toUniformSpace
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Real
Real.instLT
Dist.dist
PseudoMetricSpace.toDist
Filter.HasBasis.cauchySeq_iff
uniformity_basis_dist
cauchySeq_iff' 📖mathematicalCauchySeq
PseudoMetricSpace.toUniformSpace
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Real
Real.instLT
Dist.dist
PseudoMetricSpace.toDist
Filter.HasBasis.cauchySeq_iff'
uniformity_basis_dist
complete_of_cauchySeq_tendsto 📖mathematicalFilter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
CompleteSpaceEMetric.complete_of_cauchySeq_tendsto
complete_of_convergent_controlled_sequences 📖mathematicalReal
Real.instLT
Real.instZero
Filter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
CompleteSpaceUniformSpace.complete_of_convergent_controlled_sequences
EMetric.instIsCountablyGeneratedUniformity
dist_mem_uniformity
exists_subseq_bounded_of_cauchySeq 📖mathematicalCauchySeq
PseudoMetricSpace.toUniformSpace
Nat.instPreorder
Real
Real.instLT
Real.instZero
StrictMono
Dist.dist
PseudoMetricSpace.toDist
Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
cauchySeq_iff
LE.le.trans
Filter.extraction_forall_of_eventually
uniformCauchySeqOn_iff 📖mathematicalUniformCauchySeqOn
PseudoMetricSpace.toUniformSpace
Filter.atTop
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Real
Real.instLT
Dist.dist
PseudoMetricSpace.toDist
mem_uniformity_dist
Filter.eventually_atTop_prod_self'
SemilatticeSup.instIsDirectedOrder
Filter.Eventually.mono
Filter.prod_atTop_atTop_eq
Filter.eventually_atTop
LE.le.ge

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
cauchySeq_bdd 📖mathematicalCauchySeq
PseudoMetricSpace.toUniformSpace
Nat.instPreorder
Real
Real.instLT
Real.instZero
Dist.dist
PseudoMetricSpace.toDist
Metric.cauchySeq_iff'
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
add_pos_of_nonneg_of_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_or_gt
lt_of_lt_of_le
le_add_of_nonneg_left
covariant_swap_add_of_covariant_add
Finset.le_sup
Finset.mem_range
lt_of_le_of_lt
lt_add_of_pos_right
add_pos
dist_triangle_right
add_lt_add
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
cauchySeq_iff_le_tendsto_0 📖mathematicalCauchySeq
PseudoMetricSpace.toUniformSpace
Nat.instPreorder
Real
Real.instLE
Real.instZero
Dist.dist
PseudoMetricSpace.toDist
Filter.Tendsto
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
Real.pseudoMetricSpace
cauchySeq_bdd
le_of_lt
le_csSup
le_rfl
dist_self
Metric.tendsto_atTop
Nat.instAtLeastTwoHAddOfNat
Real.dist_0_eq_abs
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
lt_of_le_of_lt
csSup_le
le_trans
half_lt_self
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Metric.cauchySeq_iff
half_pos
cauchySeq_of_le_tendsto_0
cauchySeq_of_le_tendsto_0 📖mathematicalReal
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Filter.Tendsto
Filter.atTop
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
CauchySeqcauchySeq_of_le_tendsto_0'
le_rfl
cauchySeq_of_le_tendsto_0' 📖mathematicalReal
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Filter.Tendsto
Filter.atTop
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
CauchySeqMetric.cauchySeq_iff'
dist_comm
Filter.Eventually.exists
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Filter.Tendsto.eventually
gt_mem_nhds
instOrderTopologyReal

---

← Back to Index