Documentation Verification Report

Closeds

πŸ“ Source: Mathlib/Topology/MetricSpace/Closeds.lean

Statistics

MetricCount
DefinitionsinstMetricSpace, hausdorff, instEMetricSpace, instEMetricSpace, instEMetricSpace
5
Theoremsedist_eq, isClosed_subsets_of_isClosed, isometry_singleton, lipschitz_sup, isUniformEmbedding, continuous_toCloseds, isClosed_in_closeds, isClosed_subsets_of_isClosed, isUniformEmbedding_toCloseds, isometry_singleton, isometry_toCloseds, lipschitz_prod, lipschitz_sup, continuous_infEdist_hausdorffEdist, hausdorffEdist_le_of_mem_hausdorffEntourage, isClosed_subsets_of_isClosed, mem_hausdorffEntourage_of_hausdorffEdist_lt, dist_eq, hausdorffEDist_le_of_mem_hausdorffEntourage, lipschitz_infDist, lipschitz_infDist_set, mem_hausdorffEntourage_of_hausdorffEDist_lt, uniformContinuous_infDist_Hausdorff_dist, continuous_infEDist, edist_eq, instCompleteSpace, isometry_singleton, lipschitz_sup, edist_eq, isometry_singleton, isometry_toCloseds, lipschitz_prod, lipschitz_sup, instCompleteSpace, instSecondCountableTopology, isClosed_in_closeds, isometry_singleton, isometry_toCloseds, isometry_toCompacts, lipschitz_prod, lipschitz_sup
41
Total46

EMetric

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_infEdist_hausdorffEdist πŸ“–mathematicalβ€”Continuous
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
ENNReal
instTopologicalSpaceProd
TopologicalSpace.Closeds.uniformSpace
ENNReal.instTopologicalSpace
Metric.infEDist
SetLike.coe
TopologicalSpace.Closeds.instSetLike
β€”TopologicalSpace.Closeds.continuous_infEDist
hausdorffEdist_le_of_mem_hausdorffEntourage πŸ“–mathematicalSet
SetRel
Set.instMembership
hausdorffEntourage
setOf
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Metric.hausdorffEDistβ€”Metric.hausdorffEDist_le_of_mem_hausdorffEntourage
isClosed_subsets_of_isClosed πŸ“–mathematicalβ€”IsClosed
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
TopologicalSpace.Closeds.uniformSpace
setOf
Set
Set.instHasSubset
SetLike.coe
TopologicalSpace.Closeds.instSetLike
β€”TopologicalSpace.Closeds.isClosed_subsets_of_isClosed
mem_hausdorffEntourage_of_hausdorffEdist_lt πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.hausdorffEDist
Set
SetRel
Set.instMembership
hausdorffEntourage
setOf
EDist.edist
PseudoEMetricSpace.toEDist
β€”Metric.mem_hausdorffEntourage_of_hausdorffEDist_lt

EMetric.Closeds

Theorems

NameKindAssumesProvesValidatesDepends On
edist_eq πŸ“–mathematicalβ€”EDist.edist
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
PseudoEMetricSpace.toEDist
TopologicalSpace.Closeds.instEMetricSpace
Metric.hausdorffEDist
SetLike.coe
TopologicalSpace.Closeds.instSetLike
β€”TopologicalSpace.Closeds.edist_eq
isClosed_subsets_of_isClosed πŸ“–mathematicalβ€”IsClosed
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
TopologicalSpace.Closeds.uniformSpace
setOf
Set
Set.instHasSubset
SetLike.coe
TopologicalSpace.Closeds.instSetLike
β€”TopologicalSpace.Closeds.isClosed_subsets_of_isClosed
isometry_singleton πŸ“–mathematicalβ€”Isometry
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
TopologicalSpace.Closeds.instEMetricSpace
TopologicalSpace.Closeds.instSingletonOfT1Space
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
β€”TopologicalSpace.Closeds.isometry_singleton
lipschitz_sup πŸ“–mathematicalβ€”LipschitzWith
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
Prod.pseudoEMetricSpaceMax
TopologicalSpace.Closeds.instEMetricSpace
NNReal
instOneNNReal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Closeds.instCompleteLattice
β€”TopologicalSpace.Closeds.lipschitz_sup

EMetric.NonemptyCompacts

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_toCloseds πŸ“–mathematicalβ€”Continuous
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
TopologicalSpace.Closeds
TopologicalSpace.NonemptyCompacts.topology
TopologicalSpace.Closeds.uniformSpace
TopologicalSpace.NonemptyCompacts.toCloseds
β€”TopologicalSpace.NonemptyCompacts.continuous_toCloseds
isClosed_in_closeds πŸ“–mathematicalβ€”IsClosed
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
TopologicalSpace.Closeds.uniformSpace
Set.range
TopologicalSpace.NonemptyCompacts
TopologicalSpace.NonemptyCompacts.toCloseds
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
β€”TopologicalSpace.NonemptyCompacts.isClosed_in_closeds
isClosed_subsets_of_isClosed πŸ“–mathematicalβ€”IsClosed
TopologicalSpace.NonemptyCompacts
TopologicalSpace.NonemptyCompacts.topology
setOf
Set
Set.instHasSubset
SetLike.coe
TopologicalSpace.NonemptyCompacts.instSetLike
β€”TopologicalSpace.NonemptyCompacts.isClosed_subsets_of_isClosed
isUniformEmbedding_toCloseds πŸ“–mathematicalβ€”IsUniformEmbedding
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
TopologicalSpace.Closeds
TopologicalSpace.NonemptyCompacts.uniformSpace
TopologicalSpace.Closeds.uniformSpace
TopologicalSpace.NonemptyCompacts.toCloseds
β€”TopologicalSpace.NonemptyCompacts.isUniformEmbedding_toCloseds
isometry_singleton πŸ“–mathematicalβ€”Isometry
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
TopologicalSpace.NonemptyCompacts.instEMetricSpace
TopologicalSpace.NonemptyCompacts.instSingleton
β€”TopologicalSpace.NonemptyCompacts.isometry_singleton
isometry_toCloseds πŸ“–mathematicalβ€”Isometry
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
TopologicalSpace.Closeds
TopologicalSpace.NonemptyCompacts.instEMetricSpace
TopologicalSpace.Closeds.instEMetricSpace
TopologicalSpace.NonemptyCompacts.toCloseds
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
β€”TopologicalSpace.NonemptyCompacts.isometry_toCloseds
lipschitz_prod πŸ“–mathematicalβ€”LipschitzWith
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
instTopologicalSpaceProd
Prod.pseudoEMetricSpaceMax
TopologicalSpace.NonemptyCompacts.instEMetricSpace
Prod.emetricSpaceMax
NNReal
instOneNNReal
SProd.sprod
TopologicalSpace.NonemptyCompacts.instSProdProd
β€”TopologicalSpace.NonemptyCompacts.lipschitz_prod
lipschitz_sup πŸ“–mathematicalβ€”LipschitzWith
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
Prod.pseudoEMetricSpaceMax
TopologicalSpace.NonemptyCompacts.instEMetricSpace
NNReal
instOneNNReal
TopologicalSpace.NonemptyCompacts.instMax
β€”TopologicalSpace.NonemptyCompacts.lipschitz_sup

EMetric.NonemptyCompacts.ToCloseds

Theorems

NameKindAssumesProvesValidatesDepends On
isUniformEmbedding πŸ“–mathematicalβ€”IsUniformEmbedding
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
TopologicalSpace.Closeds
TopologicalSpace.NonemptyCompacts.uniformSpace
TopologicalSpace.Closeds.uniformSpace
TopologicalSpace.NonemptyCompacts.toCloseds
β€”TopologicalSpace.NonemptyCompacts.isUniformEmbedding_toCloseds

Metric

Theorems

NameKindAssumesProvesValidatesDepends On
hausdorffEDist_le_of_mem_hausdorffEntourage πŸ“–mathematicalSet
SetRel
Set.instMembership
hausdorffEntourage
setOf
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
hausdorffEDistβ€”hausdorffEDist_def
max_le_iff
iSupβ‚‚_le_iff
iInfβ‚‚_le_of_le
PseudoEMetricSpace.edist_comm
Set.mem_setOf
hausdorffEntourage.eq_1
lipschitz_infDist πŸ“–mathematicalβ€”LipschitzWith
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Real
Prod.pseudoEMetricSpaceMax
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
TopologicalSpace.NonemptyCompacts.instEMetricSpace
Real.metricSpace
NNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instSemiringNNReal
Nat.instAtLeastTwoHAddOfNat
infDist
SetLike.coe
TopologicalSpace.NonemptyCompacts.instSetLike
β€”Nat.instAtLeastTwoHAddOfNat
one_add_one_eq_two
LipschitzWith.uncurry
lipschitz_infDist_pt
lipschitz_infDist_set
lipschitz_infDist_set πŸ“–mathematicalβ€”LipschitzWith
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Real
EMetricSpace.toPseudoEMetricSpace
TopologicalSpace.NonemptyCompacts.instEMetricSpace
MetricSpace.toEMetricSpace
Real.metricSpace
NNReal
instOneNNReal
infDist
SetLike.coe
TopologicalSpace.NonemptyCompacts.instSetLike
β€”LipschitzWith.of_le_add
dist_comm
infDist_le_infDist_add_hausdorffDist
edist_ne_top
mem_hausdorffEntourage_of_hausdorffEDist_lt πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
hausdorffEDist
Set
SetRel
Set.instMembership
hausdorffEntourage
setOf
EDist.edist
PseudoEMetricSpace.toEDist
β€”hausdorffEntourage.eq_1
Set.mem_setOf
PseudoEMetricSpace.edist_comm
LE.le.trans_lt
le_iSupβ‚‚
max_lt_iff
hausdorffEDist_def
uniformContinuous_infDist_Hausdorff_dist πŸ“–mathematicalβ€”UniformContinuous
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Real
instUniformSpaceProd
TopologicalSpace.NonemptyCompacts.uniformSpace
Real.pseudoMetricSpace
infDist
SetLike.coe
TopologicalSpace.NonemptyCompacts.instSetLike
β€”LipschitzWith.uniformContinuous
Nat.instAtLeastTwoHAddOfNat
lipschitz_infDist

Metric.NonemptyCompacts

Definitions

NameCategoryTheorems
instMetricSpace πŸ“–CompOp
2 mathmath: GromovHausdorff.ghDist_le_nonemptyCompacts_dist, dist_eq

Theorems

NameKindAssumesProvesValidatesDepends On
dist_eq πŸ“–mathematicalβ€”Dist.dist
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
PseudoMetricSpace.toDist
instMetricSpace
Metric.hausdorffDist
SetLike.coe
TopologicalSpace.NonemptyCompacts.instSetLike
β€”β€”

PseudoEMetricSpace

Definitions

NameCategoryTheorems
hausdorff πŸ“–CompOpβ€”

TopologicalSpace.Closeds

Definitions

NameCategoryTheorems
instEMetricSpace πŸ“–CompOp
9 mathmath: EMetric.NonemptyCompacts.isometry_toCloseds, EMetric.Closeds.isometry_singleton, lipschitz_sup, edist_eq, isometry_singleton, TopologicalSpace.NonemptyCompacts.isometry_toCloseds, EMetric.Closeds.lipschitz_sup, EMetric.Closeds.edist_eq, TopologicalSpace.Compacts.isometry_toCloseds

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_infEDist πŸ“–mathematicalβ€”Continuous
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
ENNReal
instTopologicalSpaceProd
uniformSpace
ENNReal.instTopologicalSpace
Metric.infEDist
SetLike.coe
instSetLike
β€”continuous_of_le_add_edist
Nat.instAtLeastTwoHAddOfNat
Metric.infEDist_le_infEDist_add_hausdorffEDist
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
Metric.infEDist_le_infEDist_add_edist
add_assoc
Metric.hausdorffEDist_comm
add_le_add_right
add_le_add
le_max_left
le_max_right
mul_two
mul_comm
edist_eq πŸ“–mathematicalβ€”EDist.edist
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
PseudoEMetricSpace.toEDist
instEMetricSpace
Metric.hausdorffEDist
SetLike.coe
instSetLike
β€”β€”
instCompleteSpace πŸ“–mathematicalβ€”CompleteSpace
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
uniformSpace
β€”Nat.instAtLeastTwoHAddOfNat
ENNReal.pow_ne_top
ENNReal.Finiteness.inv_ne_top
ne_of_gt
Mathlib.Meta.Positivity.pos_of_isNat
ENNReal.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
EMetric.complete_of_convergent_controlled_sequences
isClosed_iInter
isClosed_closure
Metric.exists_edist_lt_of_hausdorffEDist_lt
div_eq_mul_inv
ENNReal.inv_pow
pow_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
le_of_lt
cauchySeq_of_edist_le_geometric_two
cauchySeq_tendsto_of_complete
Set.mem_iInter
mem_closure_of_tendsto
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
edist_le_of_edist_le_geometric_two_of_tendstoβ‚€
EMetric.mem_closure_iff
le_refl
PseudoEMetricSpace.edist_triangle
add_le_add
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
two_mul
Metric.hausdorffEDist_le_of_mem_edist
EMetric.tendsto_atTop
ENNReal.Tendsto.const_mul
ENNReal.tendsto_pow_atTop_nhds_zero_of_lt_one
IsOrderedRing.toZeroLEOneClass
ENNReal.instCharZero
Filter.Eventually.exists_forall_of_atTop
tendsto_order
ENNReal.instOrderTopology
MulZeroClass.mul_zero
lt_of_le_of_lt
isometry_singleton πŸ“–mathematicalβ€”Isometry
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
instEMetricSpace
instSingletonOfT1Space
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
β€”Metric.hausdorffEDist_singleton
lipschitz_sup πŸ“–mathematicalβ€”LipschitzWith
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
Prod.pseudoEMetricSpaceMax
instEMetricSpace
NNReal
instOneNNReal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”LipschitzWith.of_edist_le
Metric.hausdorffEDist_union_le

TopologicalSpace.Compacts

Definitions

NameCategoryTheorems
instEMetricSpace πŸ“–CompOp
6 mathmath: lipschitz_prod, edist_eq, lipschitz_sup, isometry_singleton, isometry_toCloseds, TopologicalSpace.NonemptyCompacts.isometry_toCompacts

Theorems

NameKindAssumesProvesValidatesDepends On
edist_eq πŸ“–mathematicalβ€”EDist.edist
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
PseudoEMetricSpace.toEDist
instEMetricSpace
Metric.hausdorffEDist
SetLike.coe
instSetLike
β€”β€”
isometry_singleton πŸ“–mathematicalβ€”Isometry
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
instEMetricSpace
instSingleton
β€”Metric.hausdorffEDist_singleton
isometry_toCloseds πŸ“–mathematicalβ€”Isometry
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
TopologicalSpace.Closeds
instEMetricSpace
TopologicalSpace.Closeds.instEMetricSpace
toCloseds
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
β€”TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
lipschitz_prod πŸ“–mathematicalβ€”LipschitzWith
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
instTopologicalSpaceProd
Prod.pseudoEMetricSpaceMax
instEMetricSpace
Prod.emetricSpaceMax
NNReal
instOneNNReal
SProd.sprod
instSProdProd
β€”LipschitzWith.of_edist_le
Metric.hausdorffEDist_prod_le
lipschitz_sup πŸ“–mathematicalβ€”LipschitzWith
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
Prod.pseudoEMetricSpaceMax
instEMetricSpace
NNReal
instOneNNReal
instMax
β€”LipschitzWith.of_edist_le
Metric.hausdorffEDist_union_le

TopologicalSpace.NonemptyCompacts

Definitions

NameCategoryTheorems
instEMetricSpace πŸ“–CompOp
12 mathmath: EMetric.NonemptyCompacts.lipschitz_prod, EMetric.NonemptyCompacts.isometry_toCloseds, isometry_singleton, lipschitz_prod, isometry_toCloseds, lipschitz_sup, GromovHausdorff.toGHSpace_lipschitz, Metric.lipschitz_infDist, EMetric.NonemptyCompacts.isometry_singleton, Metric.lipschitz_infDist_set, EMetric.NonemptyCompacts.lipschitz_sup, isometry_toCompacts

Theorems

NameKindAssumesProvesValidatesDepends On
instCompleteSpace πŸ“–mathematicalβ€”CompleteSpace
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
uniformSpace
β€”TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
completeSpace_iff_isComplete_range
Isometry.isUniformInducing
isometry_toCloseds
IsClosed.isComplete
TopologicalSpace.Closeds.instCompleteSpace
isClosed_in_closeds
instSecondCountableTopology πŸ“–mathematicalβ€”SecondCountableTopology
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
topology
β€”UniformSpace.secondCountable_of_separable
EMetric.instIsCountablyGeneratedUniformity
TopologicalSpace.exists_countable_dense
TopologicalSpace.SecondCountableTopology.to_separableSpace
Set.countable_setOf_finite_subset
Set.Countable.preimage
SetLike.coe_injective
EMetric.mem_closure_iff
exists_between
ENNReal.instDenselyOrdered
Nat.instAtLeastTwoHAddOfNat
ENNReal.half_pos
LT.lt.ne'
IsCompact.totallyBounded
isCompact
EMetric.totallyBounded_iff
Set.Finite.image
Set.mem_iUnionβ‚‚
Set.mem_image_of_mem
PseudoEMetricSpace.edist_triangle
ENNReal.add_lt_add
ENNReal.add_halves
Set.Finite.subset
le_of_lt
PseudoEMetricSpace.edist_comm
Metric.hausdorffEDist_le_of_mem_edist
LE.le.trans_lt
Metric.nonempty_of_hausdorffEDist_ne_top
nonempty
ne_top_of_lt
Set.Finite.isCompact
Set.mem_image
isClosed_in_closeds πŸ“–mathematicalβ€”IsClosed
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
TopologicalSpace.Closeds.uniformSpace
Set.range
TopologicalSpace.NonemptyCompacts
toCloseds
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
β€”TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Set.ext
nonempty
isCompact
TopologicalSpace.Closeds.ext
isClosed_of_closure_subset
EMetric.mem_closure_iff
ENNReal.coe_lt_top
Metric.nonempty_of_hausdorffEDist_ne_top
ne_of_lt
PseudoEMetricSpace.edist_comm
isCompact_iff_totallyBounded_isComplete
EMetric.totallyBounded_iff
Nat.instAtLeastTwoHAddOfNat
ENNReal.half_pos
LT.lt.ne'
Metric.exists_edist_lt_of_hausdorffEDist_lt
Set.mem_iUnionβ‚‚
PseudoEMetricSpace.edist_triangle
ENNReal.add_lt_add
ENNReal.add_halves
Set.mem_biUnion
IsClosed.isComplete
TopologicalSpace.Closeds.isClosed
isometry_singleton πŸ“–mathematicalβ€”Isometry
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
instEMetricSpace
instSingleton
β€”Metric.hausdorffEDist_singleton
isometry_toCloseds πŸ“–mathematicalβ€”Isometry
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
TopologicalSpace.Closeds
instEMetricSpace
TopologicalSpace.Closeds.instEMetricSpace
toCloseds
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
β€”TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
isometry_toCompacts πŸ“–mathematicalβ€”Isometry
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
TopologicalSpace.Compacts
instEMetricSpace
TopologicalSpace.Compacts.instEMetricSpace
toCompacts
β€”β€”
lipschitz_prod πŸ“–mathematicalβ€”LipschitzWith
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
instTopologicalSpaceProd
Prod.pseudoEMetricSpaceMax
instEMetricSpace
Prod.emetricSpaceMax
NNReal
instOneNNReal
SProd.sprod
instSProdProd
β€”LipschitzWith.of_edist_le
Metric.hausdorffEDist_prod_le
lipschitz_sup πŸ“–mathematicalβ€”LipschitzWith
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
Prod.pseudoEMetricSpaceMax
instEMetricSpace
NNReal
instOneNNReal
instMax
β€”LipschitzWith.of_edist_le
Metric.hausdorffEDist_union_le

---

← Back to Index