Documentation Verification Report

Completion

πŸ“ Source: Mathlib/Topology/MetricSpace/Completion.lean

Statistics

MetricCount
DefinitionsextensionHom, instDist, instMetricSpace
3
Theoremscompletion_extension, completion_map, extensionHom_coe, completion_extension, completion_map, coe_isometry, continuous_dist, dist_comm, dist_eq, dist_self, dist_triangle, edist_eq, instIsBoundedSMul, mem_uniformity_dist, uniformContinuous_dist, uniformity_dist, uniformity_dist'
17
Total20

Isometry

Definitions

NameCategoryTheorems
extensionHom πŸ“–CompOp
5 mathmath: extensionHom_coe, AbsoluteValue.Completion.isClosedEmbedding_extensionEmbedding_of_comp, AbsoluteValue.Completion.isometry_extensionEmbedding_of_comp, AbsoluteValue.Completion.extensionEmbedding_dist_eq_of_comp, AbsoluteValue.Completion.extensionEmbedding_of_comp_coe

Theorems

NameKindAssumesProvesValidatesDepends On
completion_extension πŸ“–mathematicalIsometry
PseudoMetricSpace.toPseudoEMetricSpace
UniformSpace.Completion
PseudoMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
UniformSpace.Completion.instMetricSpace
UniformSpace.Completion.extension
β€”of_dist_eq
UniformSpace.Completion.induction_onβ‚‚
isClosed_eq
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.PseudoMetrizableSpace.toMetrizableSpace
T3Space.toT0Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
instOrderTopologyReal
UniformSpace.pseudoMetrizableSpace
EMetric.instIsCountablyGeneratedUniformity
Continuous.dist
Continuous.comp'
UniformSpace.Completion.continuous_extension
Continuous.fst
continuous_id'
Continuous.snd
UniformSpace.Completion.extension_coe
uniformContinuous
dist_eq
UniformSpace.Completion.dist_eq
completion_map πŸ“–mathematicalIsometry
PseudoMetricSpace.toPseudoEMetricSpace
UniformSpace.Completion
PseudoMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
UniformSpace.Completion.instMetricSpace
UniformSpace.Completion.map
β€”completion_extension
UniformSpace.Completion.completeSpace
UniformSpace.Completion.t0Space
comp
UniformSpace.Completion.coe_isometry
extensionHom_coe πŸ“–mathematicalIsometry
PseudoMetricSpace.toPseudoEMetricSpace
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
UniformSpace.Completion
PseudoMetricSpace.toUniformSpace
UniformSpace.Completion.ring
extensionHom
UniformSpace.Completion.coe'
β€”UniformSpace.Completion.extensionHom_coe
continuous

LipschitzWith

Theorems

NameKindAssumesProvesValidatesDepends On
completion_extension πŸ“–mathematicalLipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
UniformSpace.Completion
PseudoMetricSpace.toUniformSpace
UniformSpace.Completion.instMetricSpace
UniformSpace.Completion.extension
MetricSpace.toPseudoMetricSpace
β€”of_dist_le_mul
UniformSpace.Completion.induction_onβ‚‚
isClosed_le
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Continuous.dist
Continuous.comp'
UniformSpace.Completion.continuous_extension
Continuous.fst
continuous_id'
Continuous.snd
Continuous.fun_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuous_const
UniformSpace.Completion.extension_coe
MetricSpace.instT0Space
uniformContinuous
UniformSpace.Completion.dist_eq
dist_le_mul
completion_map πŸ“–mathematicalLipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
UniformSpace.Completion
PseudoMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
UniformSpace.Completion.instMetricSpace
UniformSpace.Completion.map
β€”completion_extension
UniformSpace.Completion.completeSpace
comp
Isometry.lipschitz
UniformSpace.Completion.coe_isometry
one_mul

UniformSpace.Completion

Definitions

NameCategoryTheorems
instDist πŸ“–CompOp
9 mathmath: uniformContinuous_dist, dist_eq, uniformity_dist, dist_comm, dist_triangle, AbsoluteValue.Completion.extensionEmbedding_dist_eq_of_comp, uniformity_dist', dist_self, continuous_dist
instMetricSpace πŸ“–CompOp
11 mathmath: NumberField.InfinitePlace.Completion.isometry_extensionEmbeddingOfIsReal, LipschitzWith.completion_extension, NumberField.InfinitePlace.Completion.isometry_extensionEmbedding, Isometry.completion_map, coe_isometry, Isometry.completion_extension, LipschitzWith.completion_map, AbsoluteValue.Completion.isometry_extensionEmbedding_of_comp, NumberField.InfinitePlace.Completion.isometry_extensionEmbedding_of_isReal, instIsBoundedSMul, edist_eq

Theorems

NameKindAssumesProvesValidatesDepends On
coe_isometry πŸ“–mathematicalβ€”Isometry
UniformSpace.Completion
PseudoMetricSpace.toUniformSpace
PseudoMetricSpace.toPseudoEMetricSpace
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
instMetricSpace
coe'
β€”Isometry.of_dist_eq
dist_eq
continuous_dist πŸ“–mathematicalContinuous
UniformSpace.Completion
PseudoMetricSpace.toUniformSpace
UniformSpace.toTopologicalSpace
uniformSpace
Real
Real.pseudoMetricSpace
Dist.dist
instDist
β€”Continuous.comp
UniformContinuous.continuous
uniformContinuous_dist
Continuous.prodMk
dist_comm πŸ“–mathematicalβ€”Dist.dist
UniformSpace.Completion
PseudoMetricSpace.toUniformSpace
instDist
β€”induction_onβ‚‚
isClosed_eq
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.PseudoMetrizableSpace.toMetrizableSpace
T3Space.toT0Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
instOrderTopologyReal
UniformSpace.pseudoMetrizableSpace
EMetric.instIsCountablyGeneratedUniformity
continuous_dist
continuous_fst
continuous_snd
dist_eq
dist_comm
dist_eq πŸ“–mathematicalβ€”Dist.dist
UniformSpace.Completion
PseudoMetricSpace.toUniformSpace
instDist
coe'
PseudoMetricSpace.toDist
β€”extensionβ‚‚_coe_coe
T3Space.toT0Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
instOrderTopologyReal
uniformContinuous_dist
dist_self πŸ“–mathematicalβ€”Dist.dist
UniformSpace.Completion
PseudoMetricSpace.toUniformSpace
instDist
Real
Real.instZero
β€”induction_on
isClosed_eq
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.PseudoMetrizableSpace.toMetrizableSpace
T3Space.toT0Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
instOrderTopologyReal
UniformSpace.pseudoMetrizableSpace
EMetric.instIsCountablyGeneratedUniformity
continuous_dist
continuous_id
continuous_const
dist_eq
dist_self
dist_triangle πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
UniformSpace.Completion
PseudoMetricSpace.toUniformSpace
instDist
Real.instAdd
β€”induction_on₃
isClosed_le
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
continuous_dist
Continuous.fst
continuous_id
Continuous.snd
Continuous.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
dist_eq
dist_triangle
edist_eq πŸ“–mathematicalβ€”EDist.edist
UniformSpace.Completion
PseudoMetricSpace.toUniformSpace
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
instMetricSpace
coe'
PseudoMetricSpace.toPseudoEMetricSpace
β€”coe_isometry
instIsBoundedSMul πŸ“–mathematicalβ€”IsBoundedSMul
UniformSpace.Completion
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
instZeroCompletion
instSMul
β€”induction_onβ‚‚
isClosed_le
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Continuous.dist
Continuous.const_smul
UniformContinuousConstSMul.to_continuousConstSMul
instUniformContinuousConstSMul
Continuous.fst
continuous_id'
Continuous.snd
Continuous.fun_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuous_const
coe_smul
IsBoundedSMul.toUniformContinuousConstSMul
dist_eq
dist_smul_pair
induction_on
coe_zero
dist_pair_smul
mem_uniformity_dist πŸ“–mathematicalβ€”Set
UniformSpace.Completion
PseudoMetricSpace.toUniformSpace
Filter
Filter.instMembership
uniformity
uniformSpace
Real
Real.instLT
Real.instZero
Set.instMembership
β€”mem_uniformity_isClosed
uniformContinuous_def
uniformContinuous_coe
Metric.mem_uniformity_dist
induction_onβ‚‚
Set.ext
IsClosed.union
isClosed_le
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
continuous_const
UniformContinuous.continuous
uniformContinuous_dist
dist_eq
not_le
Metric.dist_mem_uniformity
uniformity_prod_eq_prod
Filter.mem_of_superset
refl_mem_uniformity
lt_of_le_of_lt
le_abs_self
dist_self
dist_comm
zero_sub
abs_neg
uniformContinuous_dist πŸ“–mathematicalβ€”UniformContinuous
UniformSpace.Completion
PseudoMetricSpace.toUniformSpace
Real
instUniformSpaceProd
uniformSpace
Real.pseudoMetricSpace
Dist.dist
instDist
β€”uniformContinuous_extensionβ‚‚
Real.instCompleteSpace
uniformity_dist πŸ“–mathematicalβ€”uniformity
UniformSpace.Completion
PseudoMetricSpace.toUniformSpace
uniformSpace
iInf
Filter
Real
Filter.instInfSet
Real.instLT
Real.instZero
Filter.principal
setOf
Dist.dist
instDist
β€”iInf_congr_Prop
iInf_subtype
uniformity_dist'
uniformity_dist' πŸ“–mathematicalβ€”uniformity
UniformSpace.Completion
PseudoMetricSpace.toUniformSpace
uniformSpace
iInf
Filter
Real
Real.instLT
Real.instZero
Filter.instInfSet
Filter.principal
setOf
Dist.dist
instDist
β€”Filter.ext
Filter.mem_iInf_of_directed
lt_min
nonempty_gt
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial

---

← Back to Index