Documentation Verification Report

Congruence

πŸ“ Source: Mathlib/Topology/MetricSpace/Congruence.lean

Statistics

MetricCount
DefinitionsCongruence, Congruent, Β«term_β‰…_Β»
3
Theoremscomp_dilation, comp_left, comp_left_iff, comp_right, comp_right_iff, dist_eq, edist_eq, index_equiv, index_map, nndist_eq, of_dist_eq, of_edist_eq, of_nndist_eq, of_pairwise_dist_eq, of_pairwise_edist_eq, of_pairwise_nndist_eq, of_subsingleton_index, pairwise_dist_eq, pairwise_edist_eq, pairwise_nndist_eq, refl, trans, congruent_comm, congruent_iff_dist_eq, congruent_iff_edist_eq, congruent_iff_nndist_eq, congruent_iff_pairwise_dist_eq, congruent_iff_pairwise_edist_eq, congruent_iff_pairwise_nndist_eq
29
Total32

CategoryTheory

Definitions

NameCategoryTheorems
Congruence πŸ“–CompData
4 mathmath: HomotopicalAlgebra.BifibrantObject.instCongruenceHomRel, Quotient.compClosure.congruence, homotopy_congruence, Functor.congruence_homRel

Congruent

Definitions

NameCategoryTheorems
Β«term_β‰…_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
comp_dilation πŸ“–mathematicalCongruent
Dilation.ratio
DFunLike.coeβ€”Dilation.edist_eq
comp_left πŸ“–β€”Isometry
Congruent
β€”β€”trans
comp_left_iff πŸ“–mathematicalIsometryCongruentβ€”trans
comp_right
refl
comp_left
comp_right πŸ“–β€”Isometry
Congruent
β€”β€”trans
symm
comp_right_iff πŸ“–mathematicalIsometryCongruentβ€”congruent_comm
comp_left_iff
dist_eq πŸ“–mathematicalCongruent
PseudoMetricSpace.toPseudoEMetricSpace
Dist.dist
PseudoMetricSpace.toDist
β€”congruent_iff_dist_eq
edist_eq πŸ“–mathematicalCongruentEDist.edist
PseudoEMetricSpace.toEDist
β€”congruent_iff_edist_eq
index_equiv πŸ“–mathematicalβ€”Congruent
DFunLike.coe
EquivLike.toFunLike
β€”EquivLike.apply_coe_symm_apply
edist_eq
index_map
index_map πŸ“–β€”Congruentβ€”β€”edist_eq
nndist_eq πŸ“–mathematicalCongruent
PseudoMetricSpace.toPseudoEMetricSpace
NNDist.nndist
PseudoMetricSpace.toNNDist
β€”congruent_iff_nndist_eq
of_dist_eq πŸ“–mathematicalDist.dist
PseudoMetricSpace.toDist
Congruent
PseudoMetricSpace.toPseudoEMetricSpace
β€”congruent_iff_dist_eq
of_edist_eq πŸ“–mathematicalEDist.edist
PseudoEMetricSpace.toEDist
Congruentβ€”congruent_iff_edist_eq
of_nndist_eq πŸ“–mathematicalNNDist.nndist
PseudoMetricSpace.toNNDist
Congruent
PseudoMetricSpace.toPseudoEMetricSpace
β€”congruent_iff_nndist_eq
of_pairwise_dist_eq πŸ“–mathematicalPairwise
Real
Dist.dist
PseudoMetricSpace.toDist
Congruent
PseudoMetricSpace.toPseudoEMetricSpace
β€”congruent_iff_pairwise_dist_eq
of_pairwise_edist_eq πŸ“–mathematicalPairwise
ENNReal
EDist.edist
PseudoEMetricSpace.toEDist
Congruentβ€”congruent_iff_pairwise_edist_eq
of_pairwise_nndist_eq πŸ“–mathematicalPairwise
NNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
Congruent
PseudoMetricSpace.toPseudoEMetricSpace
β€”congruent_iff_pairwise_nndist_eq
of_subsingleton_index πŸ“–mathematicalβ€”Congruentβ€”PseudoEMetricSpace.edist_self
pairwise_dist_eq πŸ“–mathematicalCongruent
PseudoMetricSpace.toPseudoEMetricSpace
Pairwise
Real
Dist.dist
PseudoMetricSpace.toDist
β€”congruent_iff_pairwise_dist_eq
pairwise_edist_eq πŸ“–mathematicalCongruentPairwise
ENNReal
EDist.edist
PseudoEMetricSpace.toEDist
β€”congruent_iff_pairwise_edist_eq
pairwise_nndist_eq πŸ“–mathematicalCongruent
PseudoMetricSpace.toPseudoEMetricSpace
Pairwise
NNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
β€”congruent_iff_pairwise_nndist_eq
refl πŸ“–mathematicalβ€”Congruentβ€”β€”
trans πŸ“–β€”Congruentβ€”β€”β€”

(root)

Definitions

NameCategoryTheorems
Congruent πŸ“–MathDef
23 mathmath: EuclideanGeometry.side_angle_side, Congruent.refl, congruent_iff_pairwise_edist_eq, Congruent.of_edist_eq, Congruent.of_nndist_eq, Congruent.of_pairwise_nndist_eq, Congruent.of_subsingleton_index, Congruent.of_pairwise_edist_eq, congruent_iff_pairwise_nndist_eq, congruent_comm, Congruent.comp_right_iff, EuclideanGeometry.triangle_congruent_iff_dist_eq, EuclideanGeometry.angle_side_angle, EuclideanGeometry.angle_angle_side, EuclideanGeometry.side_side_side, Congruent.of_pairwise_dist_eq, congruent_iff_dist_eq, congruent_iff_nndist_eq, congruent_iff_edist_eq, Congruent.of_dist_eq, Congruent.comp_left_iff, congruent_iff_pairwise_dist_eq, Congruent.index_equiv

Theorems

NameKindAssumesProvesValidatesDepends On
congruent_comm πŸ“–mathematicalβ€”Congruentβ€”Congruent.symm
congruent_iff_dist_eq πŸ“–mathematicalβ€”Congruent
PseudoMetricSpace.toPseudoEMetricSpace
Dist.dist
PseudoMetricSpace.toDist
β€”congruent_iff_nndist_eq
dist_nndist
congruent_iff_edist_eq πŸ“–mathematicalβ€”Congruent
EDist.edist
PseudoEMetricSpace.toEDist
β€”β€”
congruent_iff_nndist_eq πŸ“–mathematicalβ€”Congruent
PseudoMetricSpace.toPseudoEMetricSpace
NNDist.nndist
PseudoMetricSpace.toNNDist
β€”edist_nndist
congruent_iff_pairwise_dist_eq πŸ“–mathematicalβ€”Congruent
PseudoMetricSpace.toPseudoEMetricSpace
Pairwise
Real
Dist.dist
PseudoMetricSpace.toDist
β€”β€”
congruent_iff_pairwise_edist_eq πŸ“–mathematicalβ€”Congruent
Pairwise
ENNReal
EDist.edist
PseudoEMetricSpace.toEDist
β€”PseudoEMetricSpace.edist_self
congruent_iff_pairwise_nndist_eq πŸ“–mathematicalβ€”Congruent
PseudoMetricSpace.toPseudoEMetricSpace
Pairwise
NNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
β€”edist_nndist

---

← Back to Index