Documentation Verification Report

Cover

๐Ÿ“ Source: Mathlib/Topology/MetricSpace/Cover.lean

Statistics

MetricCount
DefinitionsCover, Cover, IsCover
3
Theoremsanti, closure, empty, image_lipschitz, image_lipschitz_of_surjective, isCompact, isCompact_closure, mono, mono_radius, nonempty, of_maximal_isSeparated, of_subset_cthickening, of_subset_cthickening_of_lt, of_subset_iUnion_closedBall, refl, rfl, singleton_of_ediam_le, subset_cthickening, subset_iUnion_closedBall, exists_finite_isCover_of_isCompact, exists_finite_isCover_of_isCompact_closure, exists_finite_isCover_of_totallyBounded, isCompact_closure_iff_exists_finite_isCover, isCover_closure, isCover_empty_right, isCover_iff_subset_cthickening, isCover_iff_subset_iUnion_closedBall, isCover_iff_subset_iUnion_closedEBall, isCover_iff_subset_iUnion_emetricClosedBall, isCover_zero
30
Total33

AlgebraicGeometry.Scheme

Definitions

NameCategoryTheorems
Cover ๐Ÿ“–CompOp
2 mathmath: Cover.sigmaFunctor_obj, Cover.sigmaFunctor_map

CategoryTheory.GrothendieckTopology

Definitions

NameCategoryTheorems
Cover ๐Ÿ“–CompOp
47 mathmath: coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation_pt, liftToDiagramLimitObjAux_fac, diagram_obj, liftToDiagramLimitObjAux_fac_assoc, Opens.mayerVietorisSquare_Xโ‚ƒ, CondensedMod.isDiscrete_tfae, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, preservesLimitsOfShape_diagramFunctor, diagramCompIso_hom_ฮน, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, CategoryTheory.Meq.pullback_refine, diagramCompIso_hom_ฮน_assoc, CategoryTheory.Presheaf.isLocallySurjective_toSheafify, CondensedMod.isDiscrete_iff_isDiscrete_forget, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, CategoryTheory.Presheaf.isLocallyInjective_toSheafify, Opens.mayerVietorisSquare_Xโ‚‚, Opens.coe_mayerVietorisSquare_Xโ‚, diagram_map, diagramPullback_app, CondensedMod.LocallyConstant.instFaithfulSheafCompHausCoherentTopologyTypeConstantSheaf, CondensedSet.isDiscrete_tfae, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, CondensedSet.LocallyConstant.instFaithfulCondensedTypeDiscrete, diagramFunctor_map, diagramFunctor_obj, CondensedSet.LocallyConstant.instFullCondensedTypeDiscrete, CategoryTheory.Presheaf.isLocallySurjective_toPlus, diagramNatTrans_app, preservesLimits_diagramFunctor, coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation_ฯ€_app, CategoryTheory.Meq.refine_apply, Opens.mayerVietorisSquare'_toSquare, Opens.coe_mayerVietorisSquare_Xโ‚„, CondensedMod.LocallyConstant.instFullSheafCompHausCoherentTopologyTypeConstantSheaf, diagramNatTrans_id, AlgebraicGeometry.instIsQuasicoherentOpensCarrierCarrierCommRingCatSpecTilde, CategoryTheory.Functor.SmallCategories.instPreservesFiniteLimitsSheafSheafPullbackOfRepresentablyFlat, diagramNatTrans_zero, preservesLimit_diagramFunctor, CategoryTheory.Presheaf.isLocallyInjective_toPlus, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, pullback_obj, diagramNatTrans_comp, Condensed.instAB4CondensedMod, AlgebraicGeometry.instIsIsoModulesSpecOfCarrierFromTildeฮ“FreeOpensCarrierCarrierCommRingCat, CategoryTheory.Meq.pullback_apply

Metric

Definitions

NameCategoryTheorems
IsCover ๐Ÿ“–MathDef
23 mathmath: IsCover.of_subset_cthickening_of_lt, IsCover.rfl, Delone.DeloneSet.isCover_coveringRadius, IsCover.refl, isCover_iff_subset_cthickening, exists_set_encard_eq_coveringNumber, IsCover.of_maximal_isSeparated, exists_finite_isCover_of_isCompact, isCover_empty_right, isCover_minimalCover, isCompact_closure_iff_exists_finite_isCover, exists_finite_isCover_of_totallyBounded, isCover_iff_subset_iUnion_closedEBall, exists_finite_isCover_of_isCompact_closure, IsCover.singleton_of_ediam_le, isCover_iff_subset_iUnion_closedBall, isCover_closure, isCover_iff_subset_iUnion_emetricClosedBall, IsCover.empty, isCover_zero, isCover_maximalSeparatedSet, IsCover.of_subset_cthickening, IsCover.of_subset_iUnion_closedBall

Theorems

NameKindAssumesProvesValidatesDepends On
exists_finite_isCover_of_isCompact ๐Ÿ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Set
Set.instHasSubset
Set.Finite
IsCover
โ€”exists_finite_isCover_of_totallyBounded
IsCompact.totallyBounded
exists_finite_isCover_of_isCompact_closure ๐Ÿ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
closure
Set
Set.instHasSubset
Set.Finite
IsCover
โ€”exists_finite_isCover_of_totallyBounded
TotallyBounded.subset
subset_closure
IsCompact.totallyBounded
exists_finite_isCover_of_totallyBounded ๐Ÿ“–mathematicalTotallyBounded
PseudoEMetricSpace.toUniformSpace
Set
Set.instHasSubset
Set.Finite
IsCover
โ€”EMetric.totallyBounded_iff'
ENNReal.coe_pos
lt_of_le_of_ne'
zero_le
NNReal.instCanonicallyOrderedAdd
HasSubset.Subset.trans
Set.instIsTransSubset
LT.lt.le
isCompact_closure_iff_exists_finite_isCover ๐Ÿ“–mathematicalโ€”IsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
closure
Set
Set.instHasSubset
Set.Finite
IsCover
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
โ€”exists_finite_isCover_of_isCompact_closure
IsCover.isCompact_closure
Set.Finite.isCompact
isCover_closure ๐Ÿ“–mathematicalโ€”IsCover
PseudoMetricSpace.toPseudoEMetricSpace
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
โ€”isCover_iff_subset_cthickening
IsClosed.closure_subset_iff
isClosed_cthickening
isCover_empty_right ๐Ÿ“–mathematicalโ€”IsCover
Set
Set.instEmptyCollection
โ€”SetRel.isCover_empty_right
isCover_iff_subset_cthickening ๐Ÿ“–mathematicalโ€”IsCover
PseudoMetricSpace.toPseudoEMetricSpace
Set
Set.instHasSubset
cthickening
NNReal.toReal
โ€”isCover_iff_subset_iUnion_closedBall
IsClosed.cthickening_eq_biUnion_closedBall
NNReal.zero_le_coe
isCover_iff_subset_iUnion_closedBall ๐Ÿ“–mathematicalโ€”IsCover
PseudoMetricSpace.toPseudoEMetricSpace
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
closedBall
NNReal.toReal
โ€”โ€”
isCover_iff_subset_iUnion_closedEBall ๐Ÿ“–mathematicalโ€”IsCover
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
closedEBall
ENNReal.ofNNReal
โ€”โ€”
isCover_iff_subset_iUnion_emetricClosedBall ๐Ÿ“–mathematicalโ€”IsCover
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
closedEBall
ENNReal.ofNNReal
โ€”isCover_iff_subset_iUnion_closedEBall
isCover_zero ๐Ÿ“–mathematicalโ€”IsCover
EMetricSpace.toPseudoEMetricSpace
NNReal
instZeroNNReal
Set
Set.instHasSubset
โ€”Set.iUnion_congr_Prop
closedEBall_zero
Set.biUnion_of_singleton

Metric.IsCover

Theorems

NameKindAssumesProvesValidatesDepends On
anti ๐Ÿ“–โ€”Set
Set.instHasSubset
Metric.IsCover
โ€”โ€”SetRel.IsCover.anti
closure ๐Ÿ“–mathematicalMetric.IsCover
PseudoMetricSpace.toPseudoEMetricSpace
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
โ€”Metric.isCover_closure
empty ๐Ÿ“–mathematicalโ€”Metric.IsCover
Set
Set.instEmptyCollection
โ€”SetRel.IsCover.empty
image_lipschitz ๐Ÿ“–mathematicalMetric.IsCover
LipschitzWith
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Set.image
โ€”le_imp_le_of_le_of_le
le_refl
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
image_lipschitz_of_surjective ๐Ÿ“–mathematicalMetric.IsCover
Set.preimage
LipschitzWith
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Set.image
โ€”image_lipschitz
Set.image_preimage_eq
isCompact ๐Ÿ“–โ€”Metric.IsCover
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
IsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
โ€”โ€”IsCompact.of_isClosed_subset
IsCompact.cthickening
subset_cthickening
IsCompact.isClosed
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
isCompact_closure ๐Ÿ“–mathematicalMetric.IsCover
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
IsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
closureโ€”isCompact
closure
IsCompact.isClosed
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
isClosed_closure
mono ๐Ÿ“–โ€”Set
Set.instHasSubset
Metric.IsCover
โ€”โ€”SetRel.IsCover.mono
mono_radius ๐Ÿ“–โ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Metric.IsCover
โ€”โ€”SetRel.IsCover.mono_entourage
le_trans
nonempty ๐Ÿ“–โ€”Metric.IsCover
Set.Nonempty
โ€”โ€”SetRel.IsCover.nonempty
of_maximal_isSeparated ๐Ÿ“–mathematicalMaximal
Set
Set.instLE
Set.instHasSubset
Metric.IsSeparated
ENNReal.ofNNReal
Metric.IsCoverโ€”SetRel.IsCover.of_maximal_isSeparated
of_subset_cthickening ๐Ÿ“–mathematicalSet
Set.instHasSubset
Metric.cthickening
PseudoMetricSpace.toPseudoEMetricSpace
NNReal.toReal
Metric.IsCoverโ€”Metric.isCover_iff_subset_cthickening
of_subset_cthickening_of_lt ๐Ÿ“–mathematicalSet
Set.instHasSubset
Metric.cthickening
PseudoMetricSpace.toPseudoEMetricSpace
NNReal.toReal
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
Metric.IsCoverโ€”of_subset_iUnion_closedBall
HasSubset.Subset.trans
Set.instIsTransSubset
Metric.cthickening_subset_iUnion_closedBall_of_lt
LE.le.trans_lt
NNReal.zero_le_coe
of_subset_iUnion_closedBall ๐Ÿ“–mathematicalSet
Set.instHasSubset
Set.iUnion
Set.instMembership
Metric.closedBall
NNReal.toReal
Metric.IsCover
PseudoMetricSpace.toPseudoEMetricSpace
โ€”Metric.isCover_iff_subset_iUnion_closedBall
refl ๐Ÿ“–mathematicalโ€”Metric.IsCoverโ€”SetRel.IsCover.rfl
rfl ๐Ÿ“–mathematicalโ€”Metric.IsCoverโ€”refl
singleton_of_ediam_le ๐Ÿ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.ediam
ENNReal.ofNNReal
Set
Set.instMembership
Metric.IsCover
Set.instSingletonSet
โ€”LE.le.trans
Metric.edist_le_ediam_of_mem
subset_cthickening ๐Ÿ“–mathematicalMetric.IsCover
PseudoMetricSpace.toPseudoEMetricSpace
Set
Set.instHasSubset
Metric.cthickening
NNReal.toReal
โ€”Metric.isCover_iff_subset_cthickening
subset_iUnion_closedBall ๐Ÿ“–mathematicalMetric.IsCover
PseudoMetricSpace.toPseudoEMetricSpace
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
Metric.closedBall
NNReal.toReal
โ€”Metric.isCover_iff_subset_iUnion_closedBall

---

โ† Back to Index