Documentation Verification Report

CoveringNumbers

πŸ“ Source: Mathlib/Topology/MetricSpace/CoveringNumbers.lean

Statistics

MetricCount
DefinitionscoveringNumber, externalCoveringNumber, maximalSeparatedSet, minimalCover, packingNumber
5
TheoremscoveringNumber_le_encard, externalCoveringNumber_le_encard, encard_le_packingNumber, coveringNumber_anti, coveringNumber_empty, coveringNumber_eq_one_of_ediam_le, coveringNumber_eq_zero, coveringNumber_le_encard_self, coveringNumber_le_one_of_ediam_le, coveringNumber_le_packingNumber, coveringNumber_pos_iff, coveringNumber_singleton, coveringNumber_subset_le, coveringNumber_two_mul_le_externalCoveringNumber, coveringNumber_zero, encard_le_of_isSeparated, encard_maximalSeparatedSet, encard_minimalCover, exists_set_encard_eq_coveringNumber, exists_set_encard_eq_packingNumber, externalCoveringNumber_anti, externalCoveringNumber_empty, externalCoveringNumber_eq_one_of_ediam_le, externalCoveringNumber_eq_zero, externalCoveringNumber_le_coveringNumber, externalCoveringNumber_le_encard_self, externalCoveringNumber_le_one_of_ediam_le, externalCoveringNumber_mono_set, externalCoveringNumber_pos_iff, externalCoveringNumber_singleton, externalCoveringNumber_zero, finite_minimalCover, isCover_maximalSeparatedSet, isCover_minimalCover, isSeparated_maximalSeparatedSet, maximalSeparatedSet_subset, minimalCover_subset, packingNumber_empty, packingNumber_eq_zero, packingNumber_le_encard_self, packingNumber_pos_iff, packingNumber_singleton, packingNumber_two_mul_le_externalCoveringNumber, packingNumber_zero
44
Total49

Metric

Definitions

NameCategoryTheorems
coveringNumber πŸ“–CompOp
16 mathmath: encard_minimalCover, coveringNumber_two_mul_le_externalCoveringNumber, exists_set_encard_eq_coveringNumber, coveringNumber_empty, coveringNumber_eq_one_of_ediam_le, coveringNumber_zero, IsCover.coveringNumber_le_encard, coveringNumber_pos_iff, coveringNumber_subset_le, coveringNumber_le_packingNumber, coveringNumber_eq_zero, externalCoveringNumber_le_coveringNumber, coveringNumber_singleton, coveringNumber_le_encard_self, coveringNumber_anti, coveringNumber_le_one_of_ediam_le
externalCoveringNumber πŸ“–CompOp
14 mathmath: externalCoveringNumber_eq_zero, coveringNumber_two_mul_le_externalCoveringNumber, externalCoveringNumber_le_one_of_ediam_le, externalCoveringNumber_empty, externalCoveringNumber_anti, packingNumber_two_mul_le_externalCoveringNumber, externalCoveringNumber_mono_set, IsCover.externalCoveringNumber_le_encard, externalCoveringNumber_eq_one_of_ediam_le, externalCoveringNumber_singleton, externalCoveringNumber_le_encard_self, externalCoveringNumber_pos_iff, externalCoveringNumber_le_coveringNumber, externalCoveringNumber_zero
maximalSeparatedSet πŸ“–CompOp
5 mathmath: maximalSeparatedSet_subset, isSeparated_maximalSeparatedSet, encard_maximalSeparatedSet, encard_le_of_isSeparated, isCover_maximalSeparatedSet
minimalCover πŸ“–CompOp
4 mathmath: encard_minimalCover, minimalCover_subset, finite_minimalCover, isCover_minimalCover
packingNumber πŸ“–CompOp
11 mathmath: packingNumber_eq_zero, packingNumber_two_mul_le_externalCoveringNumber, coveringNumber_le_packingNumber, packingNumber_singleton, encard_maximalSeparatedSet, IsSeparated.encard_le_packingNumber, packingNumber_zero, packingNumber_pos_iff, exists_set_encard_eq_packingNumber, packingNumber_empty, packingNumber_le_encard_self

Theorems

NameKindAssumesProvesValidatesDepends On
coveringNumber_anti πŸ“–mathematicalNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
ENat
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coveringNumber
β€”iInf_mono
iInf_const_mono
IsCover.mono_radius
coveringNumber_empty πŸ“–mathematicalβ€”coveringNumber
Set
Set.instEmptyCollection
ENat
instZeroENat
β€”iInf_congr_Prop
iInf_pos
iInf_iInf_eq_left
Set.encard_empty
coveringNumber_eq_one_of_ediam_le πŸ“–mathematicalSet.Nonempty
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ediam
ENNReal.ofNNReal
coveringNumber
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”le_antisymm
IsCover.coveringNumber_le_encard
IsCover.singleton_of_ediam_le
Set.encard_singleton
IsOrderedRing.toZeroLEOneClass
NeZero.one
coveringNumber_eq_zero πŸ“–mathematicalβ€”coveringNumber
ENat
instZeroENat
Set
Set.instEmptyCollection
β€”β€”
coveringNumber_le_encard_self πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coveringNumber
Set.encard
β€”IsCover.coveringNumber_le_encard
Set.instReflSubset
coveringNumber_le_one_of_ediam_le πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ediam
ENNReal.ofNNReal
ENat
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coveringNumber
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”Set.eq_empty_or_nonempty
coveringNumber_eq_zero
Eq.le
coveringNumber_eq_one_of_ediam_le
coveringNumber_le_packingNumber πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coveringNumber
packingNumber
β€”encard_maximalSeparatedSet
IsCover.coveringNumber_le_encard
maximalSeparatedSet_subset
isCover_maximalSeparatedSet
coveringNumber_pos_iff πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
instZeroENat
coveringNumber
Set.Nonempty
β€”not_iff_not
coveringNumber_singleton πŸ“–mathematicalβ€”coveringNumber
Set
Set.instSingletonSet
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”coveringNumber_eq_one_of_ediam_le
ediam_singleton
ENNReal.instCanonicallyOrderedAdd
coveringNumber_subset_le πŸ“–mathematicalSet
Set.instHasSubset
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coveringNumber
NNReal
NNReal.instDiv
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instSemiringNNReal
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
coveringNumber_le_packingNumber
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
add_zero
packingNumber_two_mul_le_externalCoveringNumber
externalCoveringNumber_mono_set
externalCoveringNumber_le_coveringNumber
coveringNumber_two_mul_le_externalCoveringNumber πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coveringNumber
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
externalCoveringNumber
β€”Nat.instAtLeastTwoHAddOfNat
Set.eq_empty_or_nonempty
coveringNumber_empty
externalCoveringNumber_empty
LE.le.trans
coveringNumber_le_packingNumber
packingNumber_two_mul_le_externalCoveringNumber
coveringNumber_zero πŸ“–mathematicalβ€”coveringNumber
EMetricSpace.toPseudoEMetricSpace
NNReal
instZeroNNReal
Set.encard
β€”le_antisymm
coveringNumber_le_encard_self
externalCoveringNumber_zero
externalCoveringNumber_le_coveringNumber
encard_le_of_isSeparated πŸ“–mathematicalSet
Set.instHasSubset
IsSeparated
ENNReal.ofNNReal
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Set.encard
maximalSeparatedSet
β€”encard_maximalSeparatedSet
le_iSup_of_le
encard_maximalSeparatedSet πŸ“–mathematicalβ€”Set.encard
maximalSeparatedSet
packingNumber
β€”β€”
encard_minimalCover πŸ“–mathematicalβ€”Set.encard
minimalCover
coveringNumber
β€”β€”
exists_set_encard_eq_coveringNumber πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.Finite
IsCover
Set.encard
coveringNumber
β€”ENat.exists_eq_iInf
Set.encard_lt_top_iff
iInf_subtype
iInf_congr_Prop
iInf_and
exists_set_encard_eq_packingNumber πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.Finite
IsSeparated
ENNReal.ofNNReal
Set.encard
packingNumber
β€”Set.eq_empty_or_nonempty
iSup_congr_Prop
iSup_iSup_eq_left
Set.encard_empty
iSup_pos
ENat.exists_eq_iSup_of_lt_top
iSup_and
iSup_subtype
Ne.lt_top
Set.encard_ne_top_iff
externalCoveringNumber_anti πŸ“–mathematicalNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
ENat
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
externalCoveringNumber
β€”iInf_mono
iInf_const_mono
IsCover.mono_radius
externalCoveringNumber_empty πŸ“–mathematicalβ€”externalCoveringNumber
Set
Set.instEmptyCollection
ENat
instZeroENat
β€”iInf_congr_Prop
iInf_pos
externalCoveringNumber_eq_one_of_ediam_le πŸ“–mathematicalSet.Nonempty
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ediam
ENNReal.ofNNReal
externalCoveringNumber
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”le_antisymm
LE.le.trans_eq
externalCoveringNumber_le_coveringNumber
coveringNumber_eq_one_of_ediam_le
IsOrderedRing.toZeroLEOneClass
NeZero.one
externalCoveringNumber_eq_zero πŸ“–mathematicalβ€”externalCoveringNumber
ENat
instZeroENat
Set
Set.instEmptyCollection
β€”β€”
externalCoveringNumber_le_coveringNumber πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
externalCoveringNumber
coveringNumber
β€”iInfβ‚‚_le
externalCoveringNumber_le_encard_self πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
externalCoveringNumber
Set.encard
β€”IsCover.externalCoveringNumber_le_encard
externalCoveringNumber_le_one_of_ediam_le πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ediam
ENNReal.ofNNReal
ENat
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
externalCoveringNumber
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”Set.eq_empty_or_nonempty
externalCoveringNumber_eq_zero
Eq.le
externalCoveringNumber_eq_one_of_ediam_le
externalCoveringNumber_mono_set πŸ“–mathematicalSet
Set.instHasSubset
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
externalCoveringNumber
β€”iInf_le_of_le
IsCover.anti
le_rfl
externalCoveringNumber_pos_iff πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
instZeroENat
externalCoveringNumber
Set.Nonempty
β€”not_iff_not
externalCoveringNumber_singleton πŸ“–mathematicalβ€”externalCoveringNumber
Set
Set.instSingletonSet
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”externalCoveringNumber_eq_one_of_ediam_le
ediam_singleton
ENNReal.instCanonicallyOrderedAdd
externalCoveringNumber_zero πŸ“–mathematicalβ€”externalCoveringNumber
EMetricSpace.toPseudoEMetricSpace
NNReal
instZeroNNReal
Set.encard
β€”le_antisymm
externalCoveringNumber_le_encard_self
le_iInf
Set.encard_le_encard
isCover_zero
finite_minimalCover πŸ“–mathematicalβ€”Set.Finite
minimalCover
β€”β€”
isCover_maximalSeparatedSet πŸ“–mathematicalβ€”IsCover
maximalSeparatedSet
β€”PseudoEMetricSpace.edist_self
ENNReal.instCanonicallyOrderedAdd
Mathlib.Tactic.Push.not_and_eq
isSeparated_insert_of_notMem
isSeparated_maximalSeparatedSet
encard_le_of_isSeparated
Set.encard_insert_of_notMem
ENat.lt_add_one_iff
encard_maximalSeparatedSet
isCover_minimalCover πŸ“–mathematicalβ€”IsCover
minimalCover
β€”β€”
isSeparated_maximalSeparatedSet πŸ“–mathematicalβ€”IsSeparated
ENNReal.ofNNReal
maximalSeparatedSet
β€”β€”
maximalSeparatedSet_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
maximalSeparatedSet
β€”β€”
minimalCover_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
minimalCover
β€”β€”
packingNumber_empty πŸ“–mathematicalβ€”packingNumber
Set
Set.instEmptyCollection
ENat
instZeroENat
β€”iSup_congr_Prop
iSup_iSup_eq_left
Set.encard_empty
iSup_pos
packingNumber_eq_zero πŸ“–mathematicalβ€”packingNumber
ENat
instZeroENat
Set
Set.instEmptyCollection
β€”β€”
packingNumber_le_encard_self πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
packingNumber
Set.encard
β€”Set.encard_le_encard
packingNumber_pos_iff πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
instZeroENat
packingNumber
Set.Nonempty
β€”not_iff_not
packingNumber_singleton πŸ“–mathematicalβ€”packingNumber
Set
Set.instSingletonSet
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”le_antisymm
LE.le.trans_eq
packingNumber_le_encard_self
Set.encard_singleton
le_iSup_of_le
Set.instReflSubset
packingNumber_two_mul_le_externalCoveringNumber πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
packingNumber
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
externalCoveringNumber
β€”Nat.instAtLeastTwoHAddOfNat
iSup_congr_Prop
OrderHomClass.mono
OrderRingHom.instOrderHomClass
Cardinal.mk_le_of_injective
Set.Pairwise.eq
PseudoEMetricSpace.edist_triangle
two_mul
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
PseudoEMetricSpace.edist_comm
packingNumber_zero πŸ“–mathematicalβ€”packingNumber
EMetricSpace.toPseudoEMetricSpace
NNReal
instZeroNNReal
Set.encard
β€”le_antisymm
packingNumber_le_encard_self
le_iSup_of_le
iSup_congr_Prop
Set.instReflSubset
iSup_pos

Metric.IsCover

Theorems

NameKindAssumesProvesValidatesDepends On
coveringNumber_le_encard πŸ“–mathematicalSet
Set.instHasSubset
Metric.IsCover
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Metric.coveringNumber
Set.encard
β€”LE.le.trans
iInfβ‚‚_le
iInf_le
externalCoveringNumber_le_encard πŸ“–mathematicalMetric.IsCoverENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Metric.externalCoveringNumber
Set.encard
β€”iInfβ‚‚_le

Metric.IsSeparated

Theorems

NameKindAssumesProvesValidatesDepends On
encard_le_packingNumber πŸ“–mathematicalSet
Set.instHasSubset
Metric.IsSeparated
ENNReal.ofNNReal
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Set.encard
Metric.packingNumber
β€”le_iSupβ‚‚_of_le
le_iSup_of_le
le_rfl

---

← Back to Index