Documentation Verification Report

Dilation

πŸ“ Source: Mathlib/Topology/MetricSpace/Dilation.lean

Statistics

MetricCount
DefinitionsDilation, comp, copy, funLike, id, instInhabited, instMonoid, mkOfDistEq, mkOfNNDistEq, ratio, ratioHom, toFun, DilationClass, toDilation, Β«term_β†’α΅ˆ_Β»
15
Theoremsantilipschitz, cancel_left, cancel_right, coe_comp, coe_id, coe_mk, coe_mkOfDistEq, coe_mkOfNNDistEq, coe_mul, coe_one, comap_cobounded, comp_apply, comp_assoc, comp_continuousOn_iff, comp_continuous_iff, comp_id, congr_arg, congr_fun, copy_eq_self, copy_toFun, diam_image, diam_range, dist_eq, ediam_image, ediam_range, edist_eq, edist_eq', ext, ext_iff, id_comp, injective, isClosedEmbedding, isEmbedding, isUniformEmbedding, isUniformInducing, lipschitz, mapsTo_ball, mapsTo_closedBall, mapsTo_closedEBall, mapsTo_eball, mapsTo_emetric_ball, mapsTo_emetric_closedBall, mapsTo_sphere, mk_coe, mk_coe_of_dist_eq, mk_coe_of_nndist_eq, mul_def, nndist_eq, one_def, ratioHom_apply, ratio_comp, ratio_comp', ratio_id, ratio_mul, ratio_ne_zero, ratio_of_subsingleton, ratio_of_trivial, ratio_one, ratio_pos, ratio_pow, ratio_unique, ratio_unique_of_dist_ne_zero, ratio_unique_of_nndist_ne_zero, tendsto_cobounded, tendsto_nhds_iff, toContinuous, toDilationClass, toFun_eq_coe, edist_eq', toDilation_ratio, toDilation_toFun
71
Total86

Dilation

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
10 mathmath: cancel_right, cancel_left, comp_apply, comp_id, coe_comp, id_comp, comp_assoc, mul_def, ratio_comp, ratio_comp'
copy πŸ“–CompOp
2 mathmath: copy_toFun, copy_eq_self
funLike πŸ“–CompOp
25 mathmath: ratio_one, coe_mk, ratio_id, ratio_mul, comp_apply, coe_mkOfNNDistEq, coe_comp, ratioHom_apply, Isometry.toDilation_ratio, ratio_pow, coe_one, toFun_eq_coe, coe_mul, DilationEquiv.ratio_toDilation, coe_id, congr_fun, coe_mkOfDistEq, ratio_comp, ratio_comp', mulRight_toFun, ext_iff, toDilationClass, mulLeft_toFun, Isometry.toDilation_toFun, congr_arg
id πŸ“–CompOp
5 mathmath: ratio_id, comp_id, id_comp, coe_id, one_def
instInhabited πŸ“–CompOpβ€”
instMonoid πŸ“–CompOp
8 mathmath: ratio_one, ratio_mul, ratioHom_apply, ratio_pow, coe_one, coe_mul, mul_def, one_def
mkOfDistEq πŸ“–CompOp
2 mathmath: coe_mkOfDistEq, mk_coe_of_dist_eq
mkOfNNDistEq πŸ“–CompOp
2 mathmath: mk_coe_of_nndist_eq, coe_mkOfNNDistEq
ratio πŸ“–CompOp
39 mathmath: ratio_one, mapsTo_eball, mapsTo_closedEBall, ratio_unique_of_dist_ne_zero, mapsTo_sphere, antilipschitz, ratio_id, IsometryEquiv.toDilationEquiv_ratio, ratio_mul, ediam_range, nndist_eq, ratioHom_apply, edist_eq, mapsTo_closedBall, ratio_unique, mapsTo_emetric_closedBall, Isometry.toDilation_ratio, DilationEquiv.ratio_inv, DilationEquiv.ratio_zpow, ratio_pow, ratio_pos, DilationEquiv.ratio_toDilation, mapsTo_ball, DilationEquiv.ratio_trans, DilationEquiv.ratio_refl, ratio_comp, DilationEquiv.smulTorsor_ratio, diam_range, diam_image, ratio_comp', lipschitz, mapsTo_emetric_ball, ediam_image, dist_eq, ratio_unique_of_nndist_ne_zero, ratio_of_trivial, DilationEquiv.ratio_symm, DilationEquiv.ratio_pow, ratio_of_subsingleton
ratioHom πŸ“–CompOp
1 mathmath: ratioHom_apply
toFun πŸ“–CompOp
2 mathmath: edist_eq', toFun_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
antilipschitz πŸ“–mathematicalβ€”AntilipschitzWith
NNReal
NNReal.instInv
ratio
DFunLike.coe
β€”ratio_ne_zero
ENNReal.mul_le_iff_le_inv
ENNReal.coe_ne_zero
ENNReal.coe_ne_top
Eq.ge
edist_eq
cancel_left πŸ“–mathematicalDFunLike.coe
Dilation
funLike
compβ€”ext
comp_apply
cancel_right πŸ“–mathematicalDFunLike.coe
Dilation
funLike
compβ€”ext
Function.Surjective.forall
ext_iff
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
Dilation
funLike
comp
β€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
Dilation
funLike
id
β€”β€”
coe_mk πŸ“–mathematicalEDist.edist
PseudoEMetricSpace.toEDist
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
DFunLike.coe
Dilation
funLike
β€”β€”
coe_mkOfDistEq πŸ“–mathematicalDist.dist
PseudoMetricSpace.toDist
Real
Real.instMul
NNReal.toReal
DFunLike.coe
Dilation
PseudoMetricSpace.toPseudoEMetricSpace
funLike
mkOfDistEq
β€”β€”
coe_mkOfNNDistEq πŸ“–mathematicalNNDist.nndist
PseudoMetricSpace.toNNDist
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
DFunLike.coe
Dilation
PseudoMetricSpace.toPseudoEMetricSpace
funLike
mkOfNNDistEq
β€”β€”
coe_mul πŸ“–mathematicalβ€”DFunLike.coe
Dilation
funLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
β€”β€”
coe_one πŸ“–mathematicalβ€”DFunLike.coe
Dilation
funLike
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
β€”β€”
comap_cobounded πŸ“–mathematicalβ€”Filter.comap
DFunLike.coe
Bornology.cobounded
PseudoMetricSpace.toBornology
β€”le_antisymm
LipschitzWith.comap_cobounded_le
lipschitz
Filter.Tendsto.le_comap
tendsto_cobounded
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
Dilation
funLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_continuousOn_iff πŸ“–mathematicalβ€”ContinuousOn
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
DFunLike.coe
β€”Topology.IsInducing.continuousOn_iff
IsUniformInducing.isInducing
isUniformInducing
comp_continuous_iff πŸ“–mathematicalβ€”Continuous
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
DFunLike.coe
β€”Topology.IsInducing.continuous_iff
IsUniformInducing.isInducing
isUniformInducing
comp_id πŸ“–mathematicalβ€”comp
id
β€”ext
congr_arg πŸ“–mathematicalβ€”DFunLike.coe
Dilation
funLike
β€”DFunLike.congr_arg
congr_fun πŸ“–mathematicalβ€”DFunLike.coe
Dilation
funLike
β€”DFunLike.congr_fun
copy_eq_self πŸ“–mathematicalDFunLike.coe
Dilation
funLike
copyβ€”DFunLike.ext'
copy_toFun πŸ“–mathematicalDFunLike.coe
Dilation
funLike
copyβ€”β€”
diam_image πŸ“–mathematicalβ€”Metric.diam
Set.image
DFunLike.coe
Real
Real.instMul
NNReal.toReal
ratio
PseudoMetricSpace.toPseudoEMetricSpace
β€”ediam_image
ENNReal.toReal_mul
diam_range πŸ“–mathematicalβ€”Metric.diam
Set.range
DFunLike.coe
Real
Real.instMul
NNReal.toReal
ratio
PseudoMetricSpace.toPseudoEMetricSpace
Set.univ
β€”Set.image_univ
diam_image
dist_eq πŸ“–mathematicalβ€”Dist.dist
PseudoMetricSpace.toDist
DFunLike.coe
Real
Real.instMul
NNReal.toReal
ratio
PseudoMetricSpace.toPseudoEMetricSpace
β€”nndist_eq
ediam_image πŸ“–mathematicalβ€”Metric.ediam
Set.image
DFunLike.coe
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
ratio
β€”LE.le.antisymm
LipschitzWith.ediam_image_le
lipschitz
ENNReal.mul_le_of_le_div'
div_eq_mul_inv
mul_comm
ENNReal.coe_inv
ratio_ne_zero
AntilipschitzWith.le_mul_ediam_image
antilipschitz
ediam_range πŸ“–mathematicalβ€”Metric.ediam
Set.range
DFunLike.coe
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
ratio
Set.univ
β€”Set.image_univ
ediam_image
edist_eq πŸ“–mathematicalβ€”EDist.edist
PseudoEMetricSpace.toEDist
DFunLike.coe
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
ratio
β€”DilationClass.edist_eq'
ratio.eq_1
MulZeroClass.mul_zero
ENNReal.mul_top
one_mul
edist_eq' πŸ“–mathematicalβ€”EDist.edist
PseudoEMetricSpace.toEDist
toFun
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
β€”β€”
ext πŸ“–β€”DFunLike.coe
Dilation
funLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
Dilation
funLike
β€”ext
id_comp πŸ“–mathematicalβ€”comp
id
β€”ext
injective πŸ“–mathematicalβ€”DFunLike.coeβ€”AntilipschitzWith.injective
antilipschitz
isClosedEmbedding πŸ“–mathematicalβ€”Topology.IsClosedEmbedding
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
DFunLike.coe
β€”AntilipschitzWith.isClosedEmbedding
antilipschitz
LipschitzWith.uniformContinuous
lipschitz
isEmbedding πŸ“–mathematicalβ€”Topology.IsEmbedding
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
DFunLike.coe
β€”IsUniformEmbedding.isEmbedding
isUniformEmbedding
isUniformEmbedding πŸ“–mathematicalβ€”IsUniformEmbedding
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
DFunLike.coe
β€”AntilipschitzWith.isUniformEmbedding
antilipschitz
LipschitzWith.uniformContinuous
lipschitz
isUniformInducing πŸ“–mathematicalβ€”IsUniformInducing
PseudoEMetricSpace.toUniformSpace
DFunLike.coe
β€”AntilipschitzWith.isUniformInducing
antilipschitz
LipschitzWith.uniformContinuous
lipschitz
lipschitz πŸ“–mathematicalβ€”LipschitzWith
ratio
DFunLike.coe
β€”Eq.le
edist_eq
mapsTo_ball πŸ“–mathematicalβ€”Set.MapsTo
DFunLike.coe
Metric.ball
Real
Real.instMul
NNReal.toReal
ratio
PseudoMetricSpace.toPseudoEMetricSpace
β€”Eq.trans_lt
dist_eq
mul_lt_mul_of_pos_left
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
ratio_pos
mapsTo_closedBall πŸ“–mathematicalβ€”Set.MapsTo
DFunLike.coe
Metric.closedBall
Real
Real.instMul
NNReal.toReal
ratio
PseudoMetricSpace.toPseudoEMetricSpace
β€”Eq.trans_le
dist_eq
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
NNReal.coe_nonneg
mapsTo_closedEBall πŸ“–mathematicalβ€”Set.MapsTo
DFunLike.coe
Metric.closedEBall
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
ratio
β€”Eq.trans_le
edist_eq
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
mapsTo_eball πŸ“–mathematicalβ€”Set.MapsTo
DFunLike.coe
Metric.eball
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
ratio
β€”Metric.mem_eball
edist_eq
ENNReal.mul_lt_mul_right
mapsTo_emetric_ball πŸ“–mathematicalβ€”Set.MapsTo
DFunLike.coe
Metric.eball
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
ratio
β€”mapsTo_eball
mapsTo_emetric_closedBall πŸ“–mathematicalβ€”Set.MapsTo
DFunLike.coe
Metric.closedEBall
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
ratio
β€”mapsTo_closedEBall
mapsTo_sphere πŸ“–mathematicalβ€”Set.MapsTo
DFunLike.coe
Metric.sphere
Real
Real.instMul
NNReal.toReal
ratio
PseudoMetricSpace.toPseudoEMetricSpace
β€”dist_eq
Metric.mem_sphere
mk_coe πŸ“–β€”EDist.edist
PseudoEMetricSpace.toEDist
DFunLike.coe
Dilation
funLike
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
β€”β€”ext
mk_coe_of_dist_eq πŸ“–mathematicalDist.dist
PseudoMetricSpace.toDist
DFunLike.coe
Dilation
PseudoMetricSpace.toPseudoEMetricSpace
funLike
Real
Real.instMul
NNReal.toReal
mkOfDistEqβ€”ext
mk_coe_of_nndist_eq πŸ“–mathematicalNNDist.nndist
PseudoMetricSpace.toNNDist
DFunLike.coe
Dilation
PseudoMetricSpace.toPseudoEMetricSpace
funLike
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
mkOfNNDistEqβ€”ext
mul_def πŸ“–mathematicalβ€”Dilation
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
comp
β€”β€”
nndist_eq πŸ“–mathematicalβ€”NNDist.nndist
PseudoMetricSpace.toNNDist
DFunLike.coe
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
ratio
PseudoMetricSpace.toPseudoEMetricSpace
β€”edist_eq
one_def πŸ“–mathematicalβ€”Dilation
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
id
β€”β€”
ratioHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Dilation
NNReal
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSemiringNNReal
MonoidHom.instFunLike
ratioHom
ratio
funLike
toDilationClass
β€”β€”
ratio_comp πŸ“–mathematicalβ€”ratio
Dilation
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
funLike
toDilationClass
comp
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”ratio_comp'
exists_pair_ne
edist_eq_zero
edist_ne_top
ratio_comp' πŸ“–mathematicalβ€”ratio
Dilation
funLike
toDilationClass
comp
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”toDilationClass
edist_eq
ENNReal.coe_mul
ratio_id πŸ“–mathematicalβ€”ratio
Dilation
funLike
toDilationClass
id
NNReal
instOneNNReal
β€”toDilationClass
DilationClass.edist_eq'
ratio.eq_1
Mathlib.Tactic.Push.not_forall_eq
ratio_unique
one_mul
ratio_mul πŸ“–mathematicalβ€”ratio
Dilation
funLike
toDilationClass
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”toDilationClass
ratio_of_trivial
mul_one
ratio_comp'
Mathlib.Tactic.Push.not_forall_eq
ratio_ne_zero πŸ“–β€”β€”β€”β€”DilationClass.edist_eq'
ratio.eq_1
one_ne_zero
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
ratio_of_subsingleton πŸ“–mathematicalβ€”ratio
NNReal
instOneNNReal
β€”PseudoEMetricSpace.edist_self
DilationClass.edist_eq'
ratio_of_trivial πŸ“–mathematicalEDist.edist
PseudoEMetricSpace.toEDist
ENNReal
instZeroENNReal
Top.top
instTopENNReal
ratio
NNReal
instOneNNReal
β€”DilationClass.edist_eq'
ratio_one πŸ“–mathematicalβ€”ratio
Dilation
funLike
toDilationClass
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
NNReal
instOneNNReal
β€”ratio_id
ratio_pos πŸ“–mathematicalβ€”NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
ratio
β€”Ne.bot_lt
ratio_ne_zero
ratio_pow πŸ“–mathematicalβ€”ratio
Dilation
funLike
toDilationClass
Monoid.toNatPow
instMonoid
NNReal
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
β€”MonoidHom.map_pow
ratio_unique πŸ“–mathematicalEDist.edist
PseudoEMetricSpace.toEDist
DFunLike.coe
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
ratioβ€”edist_eq
ratio_unique_of_dist_ne_zero πŸ“–mathematicalDist.dist
PseudoMetricSpace.toDist
DFunLike.coe
Real
Real.instMul
NNReal.toReal
ratio
PseudoMetricSpace.toPseudoEMetricSpace
β€”ratio_unique_of_nndist_ne_zero
NNReal.coe_ne_zero
NNReal.eq
coe_nndist
NNReal.coe_mul
ratio_unique_of_nndist_ne_zero πŸ“–mathematicalNNDist.nndist
PseudoMetricSpace.toNNDist
DFunLike.coe
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
ratio
PseudoMetricSpace.toPseudoEMetricSpace
β€”ratio_unique
edist_nndist
ENNReal.coe_ne_zero
edist_ne_top
ENNReal.coe_mul
tendsto_cobounded πŸ“–mathematicalβ€”Filter.Tendsto
DFunLike.coe
Bornology.cobounded
PseudoMetricSpace.toBornology
β€”AntilipschitzWith.tendsto_cobounded
antilipschitz
tendsto_nhds_iff πŸ“–mathematicalβ€”Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
DFunLike.coe
β€”Topology.IsInducing.tendsto_nhds_iff
IsUniformInducing.isInducing
isUniformInducing
toContinuous πŸ“–mathematicalβ€”Continuous
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
DFunLike.coe
β€”LipschitzWith.continuous
lipschitz
toDilationClass πŸ“–mathematicalβ€”DilationClass
Dilation
funLike
β€”edist_eq'
toFun_eq_coe πŸ“–mathematicalβ€”toFun
DFunLike.coe
Dilation
funLike
β€”β€”

DilationClass

Theorems

NameKindAssumesProvesValidatesDepends On
edist_eq' πŸ“–mathematicalβ€”EDist.edist
PseudoEMetricSpace.toEDist
DFunLike.coe
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
β€”β€”

Isometry

Definitions

NameCategoryTheorems
toDilation πŸ“–CompOp
3 mathmath: toDilation_ratio, IsometryEquiv.toDilationEquiv_toDilation, toDilation_toFun

Theorems

NameKindAssumesProvesValidatesDepends On
toDilation_ratio πŸ“–mathematicalIsometryDilation.ratio
Dilation
Dilation.funLike
Dilation.toDilationClass
toDilation
NNReal
instOneNNReal
β€”Dilation.toDilationClass
Dilation.ratio_of_trivial
Mathlib.Tactic.Push.not_forall_eq
Dilation.ratio_unique
one_mul
toDilation_toFun πŸ“–mathematicalIsometryDFunLike.coe
Dilation
Dilation.funLike
toDilation
β€”β€”

(root)

Definitions

NameCategoryTheorems
Dilation πŸ“–CompData
27 mathmath: Dilation.ratio_one, Dilation.coe_mk, Dilation.ratio_id, Dilation.ratio_mul, Dilation.comp_apply, Dilation.coe_mkOfNNDistEq, Dilation.coe_comp, Dilation.ratioHom_apply, Isometry.toDilation_ratio, Dilation.ratio_pow, Dilation.coe_one, Dilation.toFun_eq_coe, Dilation.coe_mul, DilationEquiv.ratio_toDilation, Dilation.coe_id, Dilation.mul_def, Dilation.congr_fun, Dilation.coe_mkOfDistEq, Dilation.ratio_comp, Dilation.one_def, Dilation.ratio_comp', Dilation.mulRight_toFun, Dilation.ext_iff, Dilation.toDilationClass, Dilation.mulLeft_toFun, Isometry.toDilation_toFun, Dilation.congr_arg
DilationClass πŸ“–CompData
2 mathmath: instDilationClassOfDilationEquivClass, Dilation.toDilationClass
Β«term_β†’α΅ˆ_Β» πŸ“–CompOpβ€”

---

← Back to Index