Documentation Verification Report

Gluing

πŸ“ Source: Mathlib/Topology/MetricSpace/Gluing.lean

Statistics

MetricCount
DefinitionsGlueSpace, InductiveLimit, dist, instDist, metricSpace, dist, glueDist, glueMetricApprox, gluePremetric, inductiveLimitDist, inductivePremetric, inhabitedLeft, inhabitedRight, instInhabitedInductiveLimitOfOfNatNat, instMetricSpaceGlueSpace, instMetricSpaceInductiveLimit, metricSpaceSum, toGlueL, toGlueR, toInductiveLimit
20
TheoremscompleteSpace, dist_ne, dist_same, dist_triangle, fst_eq_of_dist_lt_one, isOpen_iff, isometry_mk, one_le_dist_of_ne, dist_eq, dist_eq_glueDist, mem_uniformity_iff_glueDist, one_le_dist_inl_inr, one_le_dist_inr_inl, dense_iUnion_range_toInductiveLimit, glueDist_glued_points, glueDist_swap, inductiveLimitDist_eq_dist, isometry_inl, isometry_inr, le_glueDist_inl_inr, le_glueDist_inr_inl, separableSpaceInductiveLimit_of_separableSpace, toGlueL_isometry, toGlueR_isometry, toGlue_commute, toInductiveLimit_commute, toInductiveLimit_isometry
27
Total47

Metric

Definitions

NameCategoryTheorems
GlueSpace πŸ“–CompOp
3 mathmath: toGlueL_isometry, toGlue_commute, toGlueR_isometry
InductiveLimit πŸ“–CompOp
4 mathmath: separableSpaceInductiveLimit_of_separableSpace, toInductiveLimit_commute, dense_iUnion_range_toInductiveLimit, toInductiveLimit_isometry
glueDist πŸ“–CompOp
5 mathmath: glueDist_glued_points, le_glueDist_inr_inl, glueDist_swap, le_glueDist_inl_inr, Sum.dist_eq_glueDist
glueMetricApprox πŸ“–CompOpβ€”
gluePremetric πŸ“–CompOpβ€”
inductiveLimitDist πŸ“–CompOp
1 mathmath: inductiveLimitDist_eq_dist
inductivePremetric πŸ“–CompOpβ€”
inhabitedLeft πŸ“–CompOpβ€”
inhabitedRight πŸ“–CompOpβ€”
instInhabitedInductiveLimitOfOfNatNat πŸ“–CompOpβ€”
instMetricSpaceGlueSpace πŸ“–CompOp
2 mathmath: toGlueL_isometry, toGlueR_isometry
instMetricSpaceInductiveLimit πŸ“–CompOp
3 mathmath: separableSpaceInductiveLimit_of_separableSpace, dense_iUnion_range_toInductiveLimit, toInductiveLimit_isometry
metricSpaceSum πŸ“–CompOp
3 mathmath: isometry_inl, Sum.dist_eq, isometry_inr
toGlueL πŸ“–CompOp
2 mathmath: toGlueL_isometry, toGlue_commute
toGlueR πŸ“–CompOp
2 mathmath: toGlue_commute, toGlueR_isometry
toInductiveLimit πŸ“–CompOp
3 mathmath: toInductiveLimit_commute, dense_iUnion_range_toInductiveLimit, toInductiveLimit_isometry

Theorems

NameKindAssumesProvesValidatesDepends On
dense_iUnion_range_toInductiveLimit πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
Dense
InductiveLimit
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpaceInductiveLimit
Set.iUnion
Set.range
toInductiveLimit
β€”Dense.mono
Set.mem_iUnion
Set.mem_range
dense_univ
glueDist_glued_points πŸ“–mathematicalβ€”glueDistβ€”add_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
dist_nonneg
le_antisymm
dist_self
add_zero
ciInf_le
Set.forall_mem_range
le_ciInf
zero_add
glueDist_swap πŸ“–mathematicalβ€”glueDistβ€”add_comm
inductiveLimitDist_eq_dist πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
inductiveLimitDist
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Nat.leRecOn
β€”nonpos_iff_eq_zero
Nat.instCanonicallyOrderedAdd
Nat.of_le_succ
le_trans
le_max_left
le_max_right
Nat.leRecOn_succ
Isometry.dist_eq
isometry_inl πŸ“–mathematicalβ€”Isometry
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
metricSpaceSum
β€”Isometry.of_dist_eq
isometry_inr πŸ“–mathematicalβ€”Isometry
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
metricSpaceSum
β€”Isometry.of_dist_eq
le_glueDist_inl_inr πŸ“–mathematicalβ€”Real
Real.instLE
glueDist
β€”le_add_of_nonneg_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.iInf_nonneg
add_nonneg
dist_nonneg
le_glueDist_inr_inl πŸ“–mathematicalβ€”Real
Real.instLE
glueDist
β€”le_glueDist_inl_inr
separableSpaceInductiveLimit_of_separableSpace πŸ“–mathematicalTopologicalSpace.SeparableSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Isometry
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
InductiveLimit
instMetricSpaceInductiveLimit
β€”Set.countable_iUnion
instCountableNat
Set.Countable.image
Dense.of_closure
Dense.mono
Set.iUnion_subset
Continuous.range_subset_closure_image_dense
Isometry.continuous
toInductiveLimit_isometry
closure_mono
Set.subset_iUnion
dense_iUnion_range_toInductiveLimit
TopologicalSpace.exists_countable_dense
toGlueL_isometry πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
GlueSpace
instMetricSpaceGlueSpace
toGlueL
β€”Isometry.of_dist_eq
toGlueR_isometry πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
GlueSpace
instMetricSpaceGlueSpace
toGlueR
β€”Isometry.of_dist_eq
toGlue_commute πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
GlueSpace
toGlueL
toGlueR
β€”inseparable_iff
glueDist_glued_points
toInductiveLimit_commute πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
InductiveLimit
toInductiveLimit
β€”inseparable_iff
le_refl
inductiveLimitDist_eq_dist
Nat.leRecOn_self
Nat.leRecOn_succ
dist_self
toInductiveLimit_isometry πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
InductiveLimit
instMetricSpaceInductiveLimit
toInductiveLimit
β€”Isometry.of_dist_eq
le_refl
inductiveLimitDist_eq_dist
Nat.leRecOn_self

Metric.Sigma

Definitions

NameCategoryTheorems
dist πŸ“–CompOpβ€”
instDist πŸ“–CompOp
4 mathmath: one_le_dist_of_ne, dist_triangle, dist_ne, dist_same
metricSpace πŸ“–CompOp
2 mathmath: completeSpace, isometry_mk

Theorems

NameKindAssumesProvesValidatesDepends On
completeSpace πŸ“–mathematicalCompleteSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
metricSpaceβ€”IsUniformInducing.isComplete_range
Isometry.isUniformInducing
fst_eq_of_dist_lt_one
completeSpace_of_isComplete_univ
Set.iUnion_of_singleton
isComplete_iUnion_separated
Metric.dist_mem_uniformity
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
dist_ne πŸ“–mathematicalβ€”Dist.dist
instDist
Real
Real.instAdd
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Nonempty.some
Real.instOne
β€”β€”
dist_same πŸ“–mathematicalβ€”Dist.dist
instDist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
β€”β€”
dist_triangle πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
instDist
Real.instAdd
β€”eq_or_ne
dist_same
dist_triangle
dist_ne
add_zero
zero_add
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
le_rfl
zero_le_one
Real.instZeroLEOneClass
dist_nonneg
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
fst_eq_of_dist_lt_one πŸ“–β€”Real
Real.instLT
Dist.dist
instDist
Real.instOne
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
one_le_dist_of_ne
isOpen_iff πŸ“–mathematicalβ€”IsOpen
instTopologicalSpaceSigma
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Real
Real.instLT
Real.instZero
Set
Set.instMembership
β€”Metric.isOpen_iff
isOpen_sigma_iff
lt_min
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
eq_or_ne
Metric.mem_ball'
dist_same
lt_irrefl
one_le_dist_of_ne
LT.lt.trans_le
min_le_right
isometry_mk πŸ“–mathematicalβ€”Isometry
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
metricSpace
β€”Isometry.of_dist_eq
dist_same
one_le_dist_of_ne πŸ“–mathematicalβ€”Real
Real.instLE
Real.instOne
Dist.dist
instDist
β€”dist_ne
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
dist_nonneg

Metric.Sum

Definitions

NameCategoryTheorems
dist πŸ“–CompOp
4 mathmath: one_le_dist_inr_inl, one_le_dist_inl_inr, dist_eq_glueDist, dist_eq

Theorems

NameKindAssumesProvesValidatesDepends On
dist_eq πŸ“–mathematicalβ€”Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Metric.metricSpaceSum
dist
β€”β€”
dist_eq_glueDist πŸ“–mathematicalβ€”dist
Metric.glueDist
Nonempty.some
Real
Real.instOne
β€”dist_comm
add_comm
add_left_comm
ciInf_unique
add_assoc
mem_uniformity_iff_glueDist πŸ“–mathematicalReal
Real.instLT
Real.instZero
Set
Filter
Filter.instMembership
uniformity
Sum.instUniformSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Set.instMembership
β€”lt_min
LE.le.not_gt
Metric.le_glueDist_inl_inr
Metric.le_glueDist_inr_inl
one_le_dist_inl_inr πŸ“–mathematicalβ€”Real
Real.instLE
Real.instOne
dist
β€”dist.eq_3
le_imp_le_of_le_of_le
le_refl
le_add_of_nonneg_right
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
dist_nonneg
le_add_of_nonneg_left
covariant_swap_add_of_covariant_add
one_le_dist_inr_inl πŸ“–mathematicalβ€”Real
Real.instLE
Real.instOne
dist
β€”one_le_dist_inl_inr

---

← Back to Index