Documentation Verification Report

GromovHausdorff

πŸ“ Source: Mathlib/Topology/MetricSpace/GromovHausdorff.lean

Statistics

MetricCount
DefinitionsAuxGluingStruct, Space, embed, metric, GHSpace, setoid, auxGluing, ghDist, instDistGHSpace, instInhabitedAuxGluingStruct, instInhabitedGHSpace, instMetricSpaceGHSpace, repGHSpaceMetricSpace, toGHSpace, toGHSpace
15
Theoremsisom, toGHSpace_rep, dist_ghDist, eq_toGHSpace, eq_toGHSpace_iff, ghDist_eq_hausdorffDist, ghDist_le_hausdorffDist, ghDist_le_nonemptyCompacts_dist, ghDist_le_of_approx_subsets, hausdorffDist_optimal, instCompleteSpaceGHSpace, instSecondCountableTopologyGHSpace, rep_gHSpace_compactSpace, rep_gHSpace_nonempty, toGHSpace_continuous, toGHSpace_eq_toGHSpace_iff_isometryEquiv, toGHSpace_lipschitz, totallyBounded
18
Total33

GromovHausdorff

Definitions

NameCategoryTheorems
AuxGluingStruct πŸ“–CompDataβ€”
GHSpace πŸ“–CompOp
7 mathmath: dist_ghDist, totallyBounded, toGHSpace_continuous, instCompleteSpaceGHSpace, ghDist_le_nonemptyCompacts_dist, instSecondCountableTopologyGHSpace, toGHSpace_lipschitz
auxGluing πŸ“–CompOpβ€”
ghDist πŸ“–CompOp
5 mathmath: hausdorffDist_optimal, dist_ghDist, ghDist_le_hausdorffDist, ghDist_eq_hausdorffDist, ghDist_le_of_approx_subsets
instDistGHSpace πŸ“–CompOp
2 mathmath: dist_ghDist, ghDist_le_nonemptyCompacts_dist
instInhabitedAuxGluingStruct πŸ“–CompOpβ€”
instInhabitedGHSpace πŸ“–CompOpβ€”
instMetricSpaceGHSpace πŸ“–CompOp
5 mathmath: totallyBounded, toGHSpace_continuous, instCompleteSpaceGHSpace, instSecondCountableTopologyGHSpace, toGHSpace_lipschitz
repGHSpaceMetricSpace πŸ“–CompOp
3 mathmath: dist_ghDist, rep_gHSpace_compactSpace, GHSpace.toGHSpace_rep
toGHSpace πŸ“–CompOp
4 mathmath: toGHSpace_eq_toGHSpace_iff_isometryEquiv, eq_toGHSpace, GHSpace.toGHSpace_rep, eq_toGHSpace_iff

Theorems

NameKindAssumesProvesValidatesDepends On
dist_ghDist πŸ“–mathematicalβ€”Dist.dist
GHSpace
instDistGHSpace
ghDist
GHSpace.Rep
repGHSpaceMetricSpace
rep_gHSpace_nonempty
rep_gHSpace_compactSpace
β€”rep_gHSpace_nonempty
rep_gHSpace_compactSpace
ghDist.eq_1
GHSpace.toGHSpace_rep
eq_toGHSpace πŸ“–mathematicalβ€”TopologicalSpace.NonemptyCompacts
PreLp
Real
Real.normedAddCommGroup
AddSubgroup
AddCommGroup.toAddGroup
instAddCommGroupPreLp
SetLike.instMembership
AddSubgroup.instSetLike
lp
Top.top
ENNReal
instTopENNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
lp.inftyNormedCommRing
Real.normedCommRing
NormedDivisionRing.to_normOneClass
NormedField.toNormedDivisionRing
Real.normedField
IsometryRel.setoid
toGHSpace
TopologicalSpace.NonemptyCompacts.instSetLike
Subtype.metricSpace
NormedRing.toMetricSpace
lp.inftyNormedRing
NormedCommRing.toNormedRing
TopologicalSpace.NonemptyCompacts.toCompactSpace
TopologicalSpace.NonemptyCompacts.toNonempty
β€”NormedDivisionRing.to_normOneClass
TopologicalSpace.NonemptyCompacts.toCompactSpace
TopologicalSpace.NonemptyCompacts.toNonempty
eq_toGHSpace_iff
isometry_subtype_coe
Subtype.range_coe
eq_toGHSpace_iff πŸ“–mathematicalβ€”TopologicalSpace.NonemptyCompacts
PreLp
Real
Real.normedAddCommGroup
AddSubgroup
AddCommGroup.toAddGroup
instAddCommGroupPreLp
SetLike.instMembership
AddSubgroup.instSetLike
lp
Top.top
ENNReal
instTopENNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
lp.inftyNormedCommRing
Real.normedCommRing
NormedDivisionRing.to_normOneClass
NormedField.toNormedDivisionRing
Real.normedField
IsometryRel.setoid
toGHSpace
Isometry
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedRing.toMetricSpace
lp.inftyNormedRing
NormedCommRing.toNormedRing
Set.range
SetLike.coe
TopologicalSpace.NonemptyCompacts.instSetLike
β€”NormedDivisionRing.to_normOneClass
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
instLindelofSpaceOfSigmaCompactSpace
CompactSpace.sigmaCompact
PseudoEMetricSpace.pseudoMetrizableSpace
kuratowskiEmbedding.isometry
Isometry.comp
isometry_subtype_coe
IsometryEquiv.isometry
Set.range_comp'
IsometryEquiv.range_eq_univ
Set.image_univ
Subtype.range_coe
ghDist_eq_hausdorffDist πŸ“–mathematicalβ€”Isometry
PreLp
Real
Real.normedAddCommGroup
AddSubgroup
AddCommGroup.toAddGroup
instAddCommGroupPreLp
SetLike.instMembership
AddSubgroup.instSetLike
lp
Top.top
ENNReal
instTopENNReal
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedRing.toMetricSpace
lp.inftyNormedRing
NormedCommRing.toNormedRing
Real.normedCommRing
NormedDivisionRing.to_normOneClass
NormedField.toNormedDivisionRing
Real.normedField
ghDist
Metric.hausdorffDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
lp.inftyNormedCommRing
Set.range
β€”TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
instLindelofSpaceOfSigmaCompactSpace
CompactSpace.sigmaCompact
compactSpace_optimalGHCoupling
PseudoEMetricSpace.pseudoMetrizableSpace
NormedDivisionRing.to_normOneClass
Isometry.comp
kuratowskiEmbedding.isometry
isometry_optimalGHInjl
isometry_optimalGHInjr
Set.image_univ
Set.image_comp
hausdorffDist_optimal
Metric.hausdorffDist_image
ghDist_le_hausdorffDist πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
Real
Real.instLE
ghDist
Metric.hausdorffDist
MetricSpace.toPseudoMetricSpace
Set.range
β€”Set.exists_mem_of_nonempty
Set.mem_union_left
Set.mem_range_self
Set.mem_union_right
IsCompact.union
isCompact_range
Isometry.continuous
isCompact_iff_isCompact_univ
Set.range_comp
Metric.hausdorffDist_image
isometry_subtype_coe
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
instLindelofSpaceOfSigmaCompactSpace
CompactSpace.sigmaCompact
PseudoEMetricSpace.pseudoMetrizableSpace
NormedDivisionRing.to_normOneClass
kuratowskiEmbedding.isometry
IsCompact.image
Set.Nonempty.image
Set.range_nonempty
eq_toGHSpace_iff
Isometry.comp
KuratowskiEmbedding.exists_isometric_embedding
csInf_le
Metric.hausdorffDist_nonneg
Set.mem_image
ghDist_le_nonemptyCompacts_dist πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
GHSpace
instDistGHSpace
TopologicalSpace.NonemptyCompacts.toGHSpace
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
PseudoMetricSpace.toDist
Metric.NonemptyCompacts.instMetricSpace
β€”isometry_subtype_coe
Subtype.range_coe_subtype
ghDist_le_hausdorffDist
ghDist_le_of_approx_subsets πŸ“–mathematicalSet
Set.instMembership
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
abs
Real.lattice
Real.instAddGroup
Real.instSub
Set.Elem
Subtype.pseudoMetricSpace
ghDist
Real.instAdd
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”le_of_forall_pos_le_add
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.instAtLeastTwoHAddOfNat
Set.exists_mem_of_nonempty
Set.Nonempty.to_subtype
le_trans
abs_nonneg
covariant_swap_add_of_covariant_add
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
CancelDenoms.sub_subst
CancelDenoms.mul_subst
CancelDenoms.add_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
lt_of_not_ge
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.mul_nonpos
Isometry.of_dist_eq
ghDist_le_hausdorffDist
IsCompact.isBounded
isCompact_range
Isometry.continuous
Metric.hausdorffDist_triangle
Metric.hausdorffEDist_ne_top_of_nonempty_of_bounded
Set.range_nonempty
Set.Nonempty.image
Bornology.IsBounded.subset
Set.image_subset_range
Metric.hausdorffDist_triangle'
Set.image_univ
Metric.hausdorffDist_image
dist_nonneg
Metric.hausdorffDist_le_of_mem_dist
Set.mem_univ
dist_self
Set.mem_image
Set.mem_image_of_mem
Set.mem_range_self
le_of_eq
Metric.glueDist_glued_points
Set.mem_range
dist_comm
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.add_nonpos
hausdorffDist_optimal πŸ“–mathematicalβ€”Metric.hausdorffDist
OptimalGHCoupling
MetricSpace.toPseudoMetricSpace
instMetricSpaceOptimalGHCoupling
Set.range
optimalGHInjl
optimalGHInjr
ghDist
β€”NormedDivisionRing.to_normOneClass
eq_toGHSpace_iff
Nat.instAtLeastTwoHAddOfNat
Set.exists_mem_of_nonempty
Set.mem_range_self
Metric.exists_dist_lt_of_hausdorffDist_lt
Metric.hausdorffEDist_ne_top_of_nonempty_of_bounded
TopologicalSpace.NonemptyCompacts.nonempty
IsCompact.isBounded
TopologicalSpace.NonemptyCompacts.isCompact
Set.mem_range
Isometry.diam_range
Metric.diam_union
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
add_le_add_right
le_of_lt
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Isometry.dist_eq
dist_comm
dist_triangle
Set.mem_union_left
Set.mem_union_right
Metric.dist_le_diam_of_mem
hausdorffDist_optimal_le_HD
candidatesBOfCandidates_mem
le_trans
le_of_forall_gt_imp_ge_of_dense
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
ciInf_le
add_zero
HD_below_aux1
Metric.exists_dist_lt_of_hausdorffDist_lt'
HD_below_aux2
ciSup_le
candidatesBDist_mem_candidatesB
HD_candidatesBDist_le
not_lt
le_antisymm
le_csInf
Set.Nonempty.image
Set.Nonempty.prod
ghDist_le_hausdorffDist
isometry_optimalGHInjl
isometry_optimalGHInjr
instCompleteSpaceGHSpace πŸ“–mathematicalβ€”CompleteSpace
GHSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpaceGHSpace
β€”Nat.instAtLeastTwoHAddOfNat
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.instAtLeastTwo
Metric.complete_of_convergent_controlled_sequences
rep_gHSpace_compactSpace
rep_gHSpace_nonempty
AuxGluingStruct.isom
isometry_optimalGHInjl
Isometry.comp
Metric.toGlueL_isometry
UniformSpace.Completion.coe_isometry
Metric.toInductiveLimit_isometry
Metric.toInductiveLimit_commute
Set.range_comp
Metric.hausdorffDist_image
Metric.toGlueR_isometry
hausdorffDist_optimal
dist_ghDist
le_refl
isCompact_range
Isometry.continuous
Set.range_nonempty
cauchySeq_of_le_geometric
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
one_mul
le_of_lt
cauchySeq_tendsto_of_complete
TopologicalSpace.NonemptyCompacts.instCompleteSpace
UniformSpace.Completion.completeSpace
TopologicalSpace.NonemptyCompacts.toGHSpace.eq_1
GHSpace.toGHSpace_rep
toGHSpace_eq_toGHSpace_iff_isometryEquiv
Filter.Tendsto.congr
Filter.Tendsto.comp
Continuous.tendsto
toGHSpace_continuous
instSecondCountableTopologyGHSpace πŸ“–mathematicalβ€”SecondCountableTopology
GHSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpaceGHSpace
β€”Metric.secondCountable_of_countable_discretization
Nat.instAtLeastTwoHAddOfNat
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Real.instIsOrderedRing
Real.instNontrivial
finite_cover_balls_of_compact
isCompact_univ
rep_gHSpace_compactSpace
rep_gHSpace_nonempty
ghDist_le_of_approx_subsets
Set.mem_univ
Set.mem_iUnionβ‚‚
LT.lt.le
Equiv.apply_symm_apply
Equiv.symm_apply_apply
Fin.heq_funβ‚‚_iff
abs_mul
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
inv_pos
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.inv_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsInt.to_isRat
le_of_lt
Int.abs_sub_lt_one_of_floor_eq_floor
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
div_pos
Mathlib.Meta.Positivity.pos_of_isNat
mul_one
dist_ghDist
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
rep_gHSpace_compactSpace πŸ“–mathematicalβ€”CompactSpace
GHSpace.Rep
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
repGHSpaceMetricSpace
β€”NormedDivisionRing.to_normOneClass
TopologicalSpace.NonemptyCompacts.toCompactSpace
rep_gHSpace_nonempty πŸ“–mathematicalβ€”GHSpace.Repβ€”TopologicalSpace.NonemptyCompacts.toNonempty
toGHSpace_continuous πŸ“–mathematicalβ€”Continuous
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
GHSpace
TopologicalSpace.NonemptyCompacts.topology
instMetricSpaceGHSpace
TopologicalSpace.NonemptyCompacts.toGHSpace
β€”LipschitzWith.continuous
toGHSpace_lipschitz
toGHSpace_eq_toGHSpace_iff_isometryEquiv πŸ“–mathematicalβ€”toGHSpace
IsometryEquiv
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
β€”Quotient.eq
NormedDivisionRing.to_normOneClass
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
instLindelofSpaceOfSigmaCompactSpace
CompactSpace.sigmaCompact
PseudoEMetricSpace.pseudoMetrizableSpace
kuratowskiEmbedding.isometry
toGHSpace_lipschitz πŸ“–mathematicalβ€”LipschitzWith
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
GHSpace
EMetricSpace.toPseudoEMetricSpace
TopologicalSpace.NonemptyCompacts.instEMetricSpace
MetricSpace.toEMetricSpace
instMetricSpaceGHSpace
NNReal
instOneNNReal
TopologicalSpace.NonemptyCompacts.toGHSpace
β€”LipschitzWith.mk_one
ghDist_le_nonemptyCompacts_dist
totallyBounded πŸ“–mathematicalFilter.Tendsto
Real
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Real.instLE
Metric.diam
GHSpace.Rep
MetricSpace.toPseudoMetricSpace
repGHSpaceMetricSpace
Set.univ
Cardinal
Cardinal.instLE
Set.Elem
Cardinal.instNatCast
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
Metric.ball
TotallyBounded
GHSpace
instMetricSpaceGHSpace
β€”Metric.totallyBounded_of_finite_discretization
Nat.instAtLeastTwoHAddOfNat
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
one_div
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Real.instIsOrderedRing
Real.instNontrivial
Metric.tendsto_atTop
le_rfl
le_of_lt
lt_of_le_of_lt
le_abs_self
sub_eq_add_neg
neg_zero
add_zero
Fintype.card_eq
Set.card_empty
Fintype.card_fin
bot_le
Set.not_notMem
Cardinal.lt_aleph0
LE.le.trans_lt
Cardinal.natCast_lt_aleph0
Cardinal.mk_fin
Nat.cast_le
Cardinal.addLeftMono
IsOrderedRing.toZeroLEOneClass
Cardinal.isOrderedRing
Cardinal.instCharZero
min_le_left
rep_gHSpace_nonempty
rep_gHSpace_compactSpace
ghDist_le_of_approx_subsets
Set.mem_univ
Set.mem_iUnionβ‚‚
le_trans
Equiv.apply_symm_apply
Equiv.symm_apply_apply
min_eq_right
Nat.floor_mono
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
LE.le.trans
Metric.dist_le_diam_of_mem
IsCompact.isBounded
isCompact_univ
le_max_left
LT.lt.le
inv_pos
Fin.heq_funβ‚‚_iff
Int.floor_nonneg
mul_nonneg
dist_nonneg
Int.floor_toNat
abs_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pf_left
Int.abs_sub_lt_one_of_floor_eq_floor
mul_inv_cancelβ‚€
ne_of_gt
one_mul
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_assoc
mul_one
dist_ghDist
Mathlib.Tactic.Ring.add_congr
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNNRat_add
half_lt_self

GromovHausdorff.AuxGluingStruct

Definitions

NameCategoryTheorems
Space πŸ“–CompOp
1 mathmath: isom
embed πŸ“–CompOp
1 mathmath: isom
metric πŸ“–CompOp
1 mathmath: isom

Theorems

NameKindAssumesProvesValidatesDepends On
isom πŸ“–mathematicalβ€”Isometry
Space
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
metric
embed
β€”β€”

GromovHausdorff.GHSpace

Theorems

NameKindAssumesProvesValidatesDepends On
toGHSpace_rep πŸ“–mathematicalβ€”GromovHausdorff.toGHSpace
Rep
GromovHausdorff.repGHSpaceMetricSpace
GromovHausdorff.rep_gHSpace_compactSpace
GromovHausdorff.rep_gHSpace_nonempty
β€”GromovHausdorff.rep_gHSpace_compactSpace
GromovHausdorff.rep_gHSpace_nonempty
NormedDivisionRing.to_normOneClass
TopologicalSpace.NonemptyCompacts.toCompactSpace
TopologicalSpace.NonemptyCompacts.toNonempty
GromovHausdorff.eq_toGHSpace
Quot.out_eq

GromovHausdorff.IsometryRel

Definitions

NameCategoryTheorems
setoid πŸ“–CompOp
2 mathmath: GromovHausdorff.eq_toGHSpace, GromovHausdorff.eq_toGHSpace_iff

TopologicalSpace.NonemptyCompacts

Definitions

NameCategoryTheorems
toGHSpace πŸ“–CompOp
3 mathmath: GromovHausdorff.toGHSpace_continuous, GromovHausdorff.ghDist_le_nonemptyCompacts_dist, GromovHausdorff.toGHSpace_lipschitz

---

← Back to Index