Documentation Verification Report

HausdorffDimension

πŸ“ Source: Mathlib/Topology/MetricSpace/HausdorffDimension.lean

Statistics

MetricCount
DefinitionsdimH
1
TheoremsdimH_preimage_le, le_dimH_image, dense_compl_range_of_finrank_lt_finrank, dimH_range_le, dense_compl_image_of_dimH_lt_finrank, dimH_image_le, dimH_image, dimH_preimage, dimH_univ, dimH_zero, dimH_image_le, dimH_image_le, dimH_range_le, dimH_image, dimH_image, dimH_preimage, dimH_univ, dimH_image_le, dimH_image_le, dimH_range_le, dimH_eq_finrank_vectorSpan, dimH_ball_pi, dimH_ball_pi_fin, dimH_lt_top, dimH_ne_top, dimH_of_mem_nhds, dimH_of_nonempty_interior, dimH_segment, dimH_univ, dimH_univ_eq_finrank, dimH_univ_pi, dimH_univ_pi_fin, hausdorffMeasure_of_finrank_lt, dimH_zero, dimH_zero, dimH_zero, bsupr_limsup_dimH, dense_compl_of_dimH_lt_finrank, dimH_bUnion, dimH_coe_finset, dimH_countable, dimH_def, dimH_empty, dimH_eq_iInf, dimH_finite, dimH_iUnion, dimH_image_le_of_locally_holder_on, dimH_image_le_of_locally_lipschitzOn, dimH_le, dimH_le_of_hausdorffMeasure_ne_top, dimH_mono, dimH_of_hausdorffMeasure_ne_zero_ne_top, dimH_orthogonalProjection_le, dimH_range_le_of_locally_holder_on, dimH_range_le_of_locally_lipschitzOn, dimH_sUnion, dimH_singleton, dimH_subsingleton, dimH_union, exists_mem_nhdsWithin_lt_dimH_of_lt_dimH, hausdorffMeasure_of_dimH_lt, hausdorffMeasure_of_lt_dimH, iSup_limsup_dimH, le_dimH_of_hausdorffMeasure_eq_top, le_dimH_of_hausdorffMeasure_ne_zero, measure_zero_of_dimH_lt
66
Total67

AntilipschitzWith

Theorems

NameKindAssumesProvesValidatesDepends On
dimH_preimage_le πŸ“–mathematicalAntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
dimH
Set.preimage
β€”dimH_le
le_dimH_of_hausdorffMeasure_eq_top
hausdorffMeasure_preimage_le
NNReal.coe_nonneg
Mathlib.Tactic.Contrapose.contrapose₁
ENNReal.mul_ne_top
top_le_iff
le_dimH_image πŸ“–mathematicalAntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
dimH
Set.image
β€”dimH_mono
Set.subset_preimage_image
dimH_preimage_le

ContDiff

Theorems

NameKindAssumesProvesValidatesDepends On
dense_compl_range_of_finrank_lt_finrank πŸ“–mathematicalContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
WithTop
ENat
WithTop.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Module.finrank
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
Dense
Compl.compl
Set
Set.instCompl
Set.range
β€”dense_compl_of_dimH_lt_finrank
LE.le.trans_lt
dimH_range_le
Nat.cast_lt
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
ENNReal.instCharZero
dimH_range_le πŸ“–mathematicalContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
WithTop
ENat
WithTop.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
dimH
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Set.range
AddMonoidWithOne.toNatCast
instAddCommMonoidWithOneENNReal
Module.finrank
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
β€”Set.image_univ
ContDiffOn.dimH_image_le
contDiffOn
convex_univ
Set.Subset.rfl
Real.dimH_univ_eq_finrank

ContDiffOn

Theorems

NameKindAssumesProvesValidatesDepends On
dense_compl_image_of_dimH_lt_finrank πŸ“–mathematicalContDiffOn
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
WithTop
ENat
WithTop.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Convex
Real.semiring
Real.partialOrder
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
NormedSpace.toModule
Real.normedField
Set
Set.instHasSubset
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
dimH
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
AddMonoidWithOne.toNatCast
instAddCommMonoidWithOneENNReal
Module.finrank
Dense
Compl.compl
Set.instCompl
Set.image
β€”dense_compl_of_dimH_lt_finrank
LE.le.trans_lt
dimH_image_le
dimH_image_le πŸ“–mathematicalContDiffOn
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
WithTop
ENat
WithTop.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Convex
Real.semiring
Real.partialOrder
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
NormedSpace.toModule
Real.normedField
Set
Set.instHasSubset
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
dimH
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Set.image
β€”dimH_image_le_of_locally_lipschitzOn
UniformSpace.secondCountable_of_separable
EMetric.instIsCountablyGeneratedUniformity
TopologicalSpace.SecondCountableTopology.to_separableSpace
secondCountable_of_proper
FiniteDimensional.proper_real
ContDiffWithinAt.exists_lipschitzOnWith
nhdsWithin_mono

ContinuousLinearEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
dimH_image πŸ“–mathematicalβ€”dimH
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Set.image
DFunLike.coe
ContinuousLinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
EquivLike.toFunLike
equivLike
β€”RingHomInvPair.ids
le_antisymm
LipschitzWith.dimH_image_le
RingHomIsometric.ids
lipschitz
symm_image_image
dimH_preimage πŸ“–mathematicalβ€”dimH
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Set.preimage
DFunLike.coe
ContinuousLinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
EquivLike.toFunLike
equivLike
β€”RingHomInvPair.ids
image_symm_eq_preimage
dimH_image
dimH_univ πŸ“–mathematicalβ€”dimH
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Set.univ
β€”RingHomInvPair.ids
dimH_preimage
Set.preimage_univ

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
dimH_zero πŸ“–mathematicalβ€”dimH
SetLike.coe
Finset
instSetLike
ENNReal
instZeroENNReal
β€”dimH_coe_finset

HolderOnWith

Theorems

NameKindAssumesProvesValidatesDepends On
dimH_image_le πŸ“–mathematicalHolderOnWith
EMetricSpace.toPseudoEMetricSpace
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
ENNReal
Preorder.toLE
ENNReal.instPartialOrder
dimH
Set.image
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
ENNReal.ofNNReal
β€”dimH_le
hausdorffMeasure_image_le
NNReal.coe_nonneg
Mathlib.Tactic.Contrapose.contrapose₁
ENNReal.mul_ne_top
ENNReal.coe_ne_top
top_le_iff
ENNReal.coe_rpow_of_nonneg
ENNReal.le_div_iff_mul_le
ENNReal.coe_eq_zero
LT.lt.ne'
mul_comm
ENNReal.coe_mul
le_dimH_of_hausdorffMeasure_eq_top

HolderWith

Theorems

NameKindAssumesProvesValidatesDepends On
dimH_image_le πŸ“–mathematicalHolderWith
EMetricSpace.toPseudoEMetricSpace
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
ENNReal
Preorder.toLE
ENNReal.instPartialOrder
dimH
Set.image
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
ENNReal.ofNNReal
β€”HolderOnWith.dimH_image_le
holderOnWith
dimH_range_le πŸ“–mathematicalHolderWith
EMetricSpace.toPseudoEMetricSpace
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
ENNReal
Preorder.toLE
ENNReal.instPartialOrder
dimH
Set.range
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
Set.univ
ENNReal.ofNNReal
β€”dimH_image_le
Set.image_univ

Isometry

Theorems

NameKindAssumesProvesValidatesDepends On
dimH_image πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
dimH
Set.image
β€”le_antisymm
LipschitzWith.dimH_image_le
lipschitz
AntilipschitzWith.le_dimH_image
antilipschitz

IsometryEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
dimH_image πŸ“–mathematicalβ€”dimH
Set.image
DFunLike.coe
IsometryEquiv
EMetricSpace.toPseudoEMetricSpace
EquivLike.toFunLike
instEquivLike
β€”Isometry.dimH_image
isometry
dimH_preimage πŸ“–mathematicalβ€”dimH
Set.preimage
DFunLike.coe
IsometryEquiv
EMetricSpace.toPseudoEMetricSpace
EquivLike.toFunLike
instEquivLike
β€”image_symm
dimH_image
dimH_univ πŸ“–mathematicalβ€”dimH
Set.univ
β€”dimH_preimage
Set.preimage_univ

LipschitzOnWith

Theorems

NameKindAssumesProvesValidatesDepends On
dimH_image_le πŸ“–mathematicalLipschitzOnWith
EMetricSpace.toPseudoEMetricSpace
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
dimH
Set.image
β€”div_one
HolderOnWith.dimH_image_le
holderOnWith
zero_lt_one
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing

LipschitzWith

Theorems

NameKindAssumesProvesValidatesDepends On
dimH_image_le πŸ“–mathematicalLipschitzWith
EMetricSpace.toPseudoEMetricSpace
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
dimH
Set.image
β€”LipschitzOnWith.dimH_image_le
lipschitzOnWith
dimH_range_le πŸ“–mathematicalLipschitzWith
EMetricSpace.toPseudoEMetricSpace
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
dimH
Set.range
Set.univ
β€”dimH_image_le
Set.image_univ

Real

Theorems

NameKindAssumesProvesValidatesDepends On
dimH_ball_pi πŸ“–mathematicalReal
instLT
instZero
dimH
emetricSpacePi
MetricSpace.toEMetricSpace
metricSpace
Metric.ball
pseudoMetricSpacePi
pseudoMetricSpace
ENNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Fintype.card
β€”isEmpty_or_nonempty
dimH_subsingleton
Unique.instSubsingleton
Nat.cast_eq_zero
ENNReal.instCharZero
Fintype.card_eq_zero_iff
ENNReal.coe_natCast
Pi.borelSpace
Finite.to_countable
Finite.of_fintype
instSecondCountableTopologyReal
borelSpace
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.hausdorffMeasure_pi_real
volume_pi_ball
dimH_of_hausdorffMeasure_ne_zero_ne_top
NNReal.coe_natCast
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
instZeroLEOneClass
mul_pos
zero_lt_two'
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
ENNReal.ofReal_ne_top
dimH_ball_pi_fin πŸ“–mathematicalReal
instLT
instZero
dimH
emetricSpacePi
Fin.fintype
MetricSpace.toEMetricSpace
metricSpace
Metric.ball
pseudoMetricSpacePi
pseudoMetricSpace
ENNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”dimH_ball_pi
Fintype.card_fin
dimH_lt_top πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
dimH
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Top.top
instTopENNReal
β€”dimH_mono
Set.subset_univ
dimH_univ_eq_finrank
dimH_ne_top πŸ“–β€”β€”β€”β€”LT.lt.ne
dimH_lt_top
dimH_of_mem_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
dimH
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
ENNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Module.finrank
Real
semiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
normedField
β€”RingHomInvPair.ids
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Pi.topologicalAddGroup
instIsTopologicalAddGroupReal
instContinuousSMulForall
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
instCompleteSpace
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Pi.t2Space
FiniteDimensional.finiteDimensional_pi'
Finite.of_fintype
FiniteDimensional.rclike_to_real
Module.finrank_fin_fun
commRing_strongRankCondition
instNontrivial
ContinuousLinearEquiv.dimH_image
le_antisymm
LE.le.trans_eq
dimH_mono
Set.subset_univ
dimH_univ_pi_fin
ContinuousLinearEquiv.map_nhds_eq
Filter.image_mem_map
Filter.HasBasis.mem_iff
Metric.nhds_basis_ball
dimH_ball_pi_fin
dimH_of_nonempty_interior πŸ“–mathematicalSet.Nonempty
interior
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
dimH
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
ENNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Module.finrank
Real
semiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
normedField
β€”dimH_of_mem_nhds
mem_interior_iff_mem_nhds
dimH_segment πŸ“–mathematicalβ€”dimH
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
segment
Real
semiring
partialOrder
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
instMonoid
Module.toDistribMulAction
NormedSpace.toModule
normedField
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”Convex.dimH_eq_finrank_vectorSpan
convex_segment
instIsOrderedRing
left_mem_segment
instZeroLEOneClass
vectorSpan_segment
instIsStrictOrderedRing
finrank_span_singleton
sub_ne_zero
Nat.cast_one
dimH_univ πŸ“–mathematicalβ€”dimH
Real
MetricSpace.toEMetricSpace
metricSpace
Set.univ
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”dimH_univ_eq_finrank
FiniteDimensional.rclike_to_real
Module.finrank_self
commRing_strongRankCondition
instNontrivial
Nat.cast_one
dimH_univ_eq_finrank πŸ“–mathematicalβ€”dimH
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Set.univ
ENNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Module.finrank
Real
semiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
normedField
β€”dimH_of_mem_nhds
Filter.univ_mem
dimH_univ_pi πŸ“–mathematicalβ€”dimH
emetricSpacePi
Real
MetricSpace.toEMetricSpace
metricSpace
Set.univ
ENNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Fintype.card
β€”Metric.iUnion_ball_nat_succ
dimH_iUnion
instCountableNat
dimH_ball_pi
Nat.cast_add_one_pos
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
iSup_const
dimH_univ_pi_fin πŸ“–mathematicalβ€”dimH
emetricSpacePi
Real
Fin.fintype
MetricSpace.toEMetricSpace
metricSpace
Set.univ
ENNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”dimH_univ_pi
Fintype.card_fin
hausdorffMeasure_of_finrank_lt πŸ“–mathematicalReal
instLT
instNatCast
Module.finrank
semiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
normedField
MeasureTheory.Measure.hausdorffMeasure
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”CanLift.prf
NNReal.canLift
LE.le.trans
Nat.cast_nonneg
instIsOrderedRing
LT.lt.le
MeasureTheory.Measure.measure_univ_eq_zero
hausdorffMeasure_of_dimH_lt
dimH_univ_eq_finrank
NNReal.coe_natCast

Real.Convex

Theorems

NameKindAssumesProvesValidatesDepends On
dimH_eq_finrank_vectorSpan πŸ“–mathematicalConvex
Real
Real.semiring
Real.partialOrder
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
NormedSpace.toModule
Real.normedField
Set.Nonempty
dimH
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
ENNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Module.finrank
Submodule
Ring.toSemiring
Real.instRing
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
SetLike.instMembership
Submodule.setLike
vectorSpan
NormedAddTorsor.toAddTorsor
SeminormedAddCommGroup.toNormedAddTorsor
Submodule.addCommMonoid
Submodule.module
β€”Set.Nonempty.to_subtype
IsScalarTower.left
instNonemptySubtypeMemAffineSubspaceAffineSpanOfElem
subset_affineSpan
Set.Nonempty.some_mem
Set.image_preimage_eq_of_subset
HasSubset.Subset.trans
Set.instIsTransSubset
Eq.superset
Set.instReflSubset
Subtype.range_coe
Isometry.dimH_image
isometry_subtype_coe
AffineIsometryEquiv.isometry
Real.dimH_of_nonempty_interior
FiniteDimensional.finiteDimensional_submodule
Set.image_congr
Homeomorph.image_interior
intrinsicInterior_nonempty
direction_affineSpan

Set.Countable

Theorems

NameKindAssumesProvesValidatesDepends On
dimH_zero πŸ“–mathematicalβ€”dimH
ENNReal
instZeroENNReal
β€”dimH_countable

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
dimH_zero πŸ“–mathematicalβ€”dimH
ENNReal
instZeroENNReal
β€”dimH_finite

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
dimH_zero πŸ“–mathematicalSet.SubsingletondimH
ENNReal
instZeroENNReal
β€”dimH_subsingleton

(root)

Definitions

NameCategoryTheorems
dimH πŸ“–CompOp
57 mathmath: LipschitzWith.dimH_image_le, IsometryEquiv.dimH_preimage, Real.dimH_of_mem_nhds, dimH_sUnion, le_dimH_of_hausdorffMeasure_ne_zero, Real.dimH_lt_top, dimH_coe_finset, HolderOnWith.dimH_image_le, ContDiffOn.dimH_image_le, Finset.dimH_zero, le_dimH_of_hausdorffMeasure_eq_top, dimH_range_le_of_locally_holder_on, Real.dimH_univ_eq_finrank, Real.dimH_univ, dimH_of_hausdorffMeasure_ne_zero_ne_top, dimH_countable, dimH_empty, dimH_union, Real.dimH_univ_pi_fin, Real.dimH_ball_pi, dimH_le, LipschitzOnWith.dimH_image_le, HolderWith.dimH_range_le, ContinuousLinearEquiv.dimH_image, Set.Countable.dimH_zero, dimH_eq_iInf, IsometryEquiv.dimH_univ, dimH_image_le_of_locally_lipschitzOn, Real.dimH_of_nonempty_interior, dimH_bUnion, dimH_le_of_hausdorffMeasure_ne_top, dimH_mono, Real.Convex.dimH_eq_finrank_vectorSpan, IsometryEquiv.dimH_image, AntilipschitzWith.dimH_preimage_le, Real.dimH_univ_pi, LipschitzWith.dimH_range_le, dimH_finite, AntilipschitzWith.le_dimH_image, dimH_singleton, Real.dimH_ball_pi_fin, Set.Subsingleton.dimH_zero, dimH_orthogonalProjection_le, ContinuousLinearEquiv.dimH_univ, Real.dimH_segment, ContDiff.dimH_range_le, dimH_iUnion, ContinuousLinearEquiv.dimH_preimage, dimH_range_le_of_locally_lipschitzOn, dimH_image_le_of_locally_holder_on, bsupr_limsup_dimH, dimH_def, dimH_subsingleton, iSup_limsup_dimH, Isometry.dimH_image, Set.Finite.dimH_zero, HolderWith.dimH_image_le

Theorems

NameKindAssumesProvesValidatesDepends On
bsupr_limsup_dimH πŸ“–mathematicalβ€”iSup
ENNReal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Set
Set.instMembership
Filter.limsup
dimH
Filter.smallSets
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
β€”le_antisymm
iSupβ‚‚_le
Filter.limsup_le_of_le
Filter.isCobounded_le_of_bot
Filter.eventually_smallSets
self_mem_nhdsWithin
dimH_mono
le_of_forall_lt_imp_le_of_dense
ENNReal.instDenselyOrdered
exists_mem_nhdsWithin_lt_dimH_of_lt_dimH
le_iSupβ‚‚_of_le
Filter.limsup_eq
le_sInf
LE.le.trans
LT.lt.le
Set.Subset.rfl
dense_compl_of_dimH_lt_finrank πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
dimH
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Module.finrank
Real
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
Dense
Compl.compl
Set
Set.instCompl
β€”mem_closure_iff_nhds
Set.nonempty_iff_ne_empty
LT.lt.not_ge
Real.dimH_of_mem_nhds
dimH_mono
Set.diff_eq_empty
Set.diff_eq
dimH_bUnion πŸ“–mathematicalβ€”dimH
Set.iUnion
Set
Set.instMembership
iSup
ENNReal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”Set.biUnion_eq_iUnion
dimH_iUnion
Encodable.countable
iSup_subtype''
dimH_coe_finset πŸ“–mathematicalβ€”dimH
SetLike.coe
Finset
Finset.instSetLike
ENNReal
instZeroENNReal
β€”Set.Finite.dimH_zero
Finset.finite_toSet
dimH_countable πŸ“–mathematicalβ€”dimH
ENNReal
instZeroENNReal
β€”dimH_bUnion
iSup_congr_Prop
dimH_singleton
ENNReal.iSup_zero
Set.biUnion_of_singleton
dimH_def πŸ“–mathematicalβ€”dimH
iSup
ENNReal
NNReal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.hausdorffMeasure
NNReal.toReal
Top.top
instTopENNReal
ENNReal.ofNNReal
β€”BorelSpace.measurable_eq
dimH.eq_1
dimH_empty πŸ“–mathematicalβ€”dimH
Set
Set.instEmptyCollection
ENNReal
instZeroENNReal
β€”Set.Subsingleton.dimH_zero
Set.subsingleton_empty
dimH_eq_iInf πŸ“–mathematicalβ€”dimH
iInf
ENNReal
NNReal
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.hausdorffMeasure
NNReal.toReal
instZeroENNReal
ENNReal.ofNNReal
β€”le_antisymm
dimH_def
ENNReal.instCanonicallyOrderedAdd
MeasureTheory.Measure.hausdorffMeasure_mono
LT.lt.le
ENNReal.lt_iff_exists_nnreal_btwn
hausdorffMeasure_of_dimH_lt
LT.lt.not_ge
iInfβ‚‚_le
dimH_finite πŸ“–mathematicalβ€”dimH
ENNReal
instZeroENNReal
β€”Set.Countable.dimH_zero
Set.Finite.countable
dimH_iUnion πŸ“–mathematicalβ€”dimH
Set.iUnion
iSup
ENNReal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”le_antisymm
dimH_le
Mathlib.Tactic.Contrapose.contrapose₁
hausdorffMeasure_of_dimH_lt
LE.le.trans_lt
le_iSup
MeasureTheory.measure_iUnion_null
MeasureTheory.Measure.instOuterMeasureClass
ENNReal.zero_ne_top
iSup_le
dimH_mono
Set.subset_iUnion
dimH_image_le_of_locally_holder_on πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
Set
Filter
Filter.instMembership
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
HolderOnWith
ENNReal
Preorder.toLE
ENNReal.instPartialOrder
dimH
Set.image
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
ENNReal.ofNNReal
β€”TopologicalSpace.countable_cover_nhdsWithin
Set.inter_eq_self_of_subset_left
Set.inter_iUnionβ‚‚
Set.image_iUnionβ‚‚
dimH_bUnion
ENNReal.iSup_div
iSupβ‚‚_mono
HolderOnWith.dimH_image_le
HolderOnWith.mono
Set.inter_subset_right
Function.sometimes_spec
dimH_image_le_of_locally_lipschitzOn πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
LipschitzOnWith
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
dimH
Set.image
β€”div_one
dimH_image_le_of_locally_holder_on
zero_lt_one
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
dimH_le πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.ofNNReal
dimHβ€”Eq.trans_le
dimH_def
iSupβ‚‚_le
dimH_le_of_hausdorffMeasure_ne_top πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
dimH
ENNReal.ofNNReal
β€”le_of_not_gt
hausdorffMeasure_of_lt_dimH
dimH_mono πŸ“–mathematicalSet
Set.instHasSubset
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
dimH
β€”dimH_le
le_dimH_of_hausdorffMeasure_eq_top
top_unique
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
dimH_of_hausdorffMeasure_ne_zero_ne_top πŸ“–mathematicalβ€”dimH
ENNReal.ofNNReal
β€”le_antisymm
dimH_le_of_hausdorffMeasure_ne_top
le_dimH_of_hausdorffMeasure_ne_zero
dimH_orthogonalProjection_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
dimH
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
SetLike.instMembership
Submodule.setLike
instEMetricSpaceSubtype
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Set.image
DFunLike.coe
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
instTopologicalSpaceSubtype
Submodule.addCommMonoid
Submodule.module
ContinuousLinearMap.funLike
Submodule.orthogonalProjection
β€”LipschitzWith.dimH_image_le
Submodule.lipschitzWith_orthogonalProjection
dimH_range_le_of_locally_holder_on πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
Set
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
HolderOnWith
ENNReal
Preorder.toLE
ENNReal.instPartialOrder
dimH
Set.range
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
Set.univ
ENNReal.ofNNReal
β€”Set.image_univ
dimH_image_le_of_locally_holder_on
nhdsWithin_univ
dimH_range_le_of_locally_lipschitzOn πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
LipschitzOnWith
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
dimH
Set.range
Set.univ
β€”Set.image_univ
dimH_image_le_of_locally_lipschitzOn
nhdsWithin_univ
dimH_sUnion πŸ“–mathematicalβ€”dimH
Set.sUnion
iSup
ENNReal
Set
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Set.instMembership
β€”Set.sUnion_eq_biUnion
dimH_bUnion
dimH_singleton πŸ“–mathematicalβ€”dimH
Set
Set.instSingletonSet
ENNReal
instZeroENNReal
β€”Set.Subsingleton.dimH_zero
Set.subsingleton_singleton
dimH_subsingleton πŸ“–mathematicalSet.SubsingletondimH
ENNReal
instZeroENNReal
β€”le_antisymm
dimH_le_of_hausdorffMeasure_ne_top
LT.lt.ne
LE.le.trans_lt
MeasureTheory.Measure.hausdorffMeasure_le_one_of_subsingleton
le_rfl
ENNReal.one_lt_top
zero_le
ENNReal.instCanonicallyOrderedAdd
dimH_union πŸ“–mathematicalβ€”dimH
Set
Set.instUnion
ENNReal
ENNReal.instMax
β€”Set.union_eq_iUnion
dimH_iUnion
Bool.countable
iSup_bool_eq
exists_mem_nhdsWithin_lt_dimH_of_lt_dimH πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
dimH
Set
Set.instMembership
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
Mathlib.Tactic.Push.not_forall_eq
TopologicalSpace.countable_cover_nhdsWithin
dimH_mono
dimH_bUnion
iSupβ‚‚_le
Function.sometimes_spec
hausdorffMeasure_of_dimH_lt πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
dimH
ENNReal.ofNNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.hausdorffMeasure
NNReal.toReal
instZeroENNReal
β€”ENNReal.lt_iff_exists_nnreal_btwn
dimH_def
MeasureTheory.Measure.hausdorffMeasure_zero_or_top
NNReal.coe_lt_coe
ENNReal.coe_lt_coe
LT.lt.not_ge
le_iSupβ‚‚
hausdorffMeasure_of_lt_dimH πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.ofNNReal
dimH
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.hausdorffMeasure
NNReal.toReal
Top.top
instTopENNReal
β€”dimH_def
top_unique
MeasureTheory.Measure.hausdorffMeasure_mono
LT.lt.le
NNReal.coe_lt_coe
ENNReal.coe_lt_coe
iSup_limsup_dimH πŸ“–mathematicalβ€”iSup
ENNReal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Filter.limsup
Set
dimH
Filter.smallSets
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
β€”le_antisymm
iSup_le
Filter.limsup_le_of_le
Filter.isCobounded_le_of_bot
Filter.eventually_smallSets
self_mem_nhdsWithin
dimH_mono
bsupr_limsup_dimH
iSupβ‚‚_le_iSup
le_dimH_of_hausdorffMeasure_eq_top πŸ“–mathematicalDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.hausdorffMeasure
NNReal.toReal
Top.top
instTopENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.ofNNReal
dimH
β€”dimH_def
le_iSupβ‚‚
le_dimH_of_hausdorffMeasure_ne_zero πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.ofNNReal
dimH
β€”le_of_not_gt
hausdorffMeasure_of_dimH_lt
measure_zero_of_dimH_lt πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuous
MeasureTheory.Measure.hausdorffMeasure
NNReal.toReal
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
dimH
ENNReal.ofNNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
instZeroENNReal
β€”hausdorffMeasure_of_dimH_lt

---

← Back to Index