TheoremsdimH_preimage_le, le_dimH_image, dense_compl_range_of_finrank_lt_finrank, dimH_range_le, dense_compl_image_of_dimH_lt_finrank, dimH_image_le, dimH_image, dimH_preimage, dimH_univ, dimH_zero, dimH_image_le, dimH_image_le, dimH_range_le, dimH_image, dimH_image, dimH_preimage, dimH_univ, dimH_image_le, dimH_image_le, dimH_range_le, dimH_eq_finrank_vectorSpan, dimH_ball_pi, dimH_ball_pi_fin, dimH_lt_top, dimH_ne_top, dimH_of_mem_nhds, dimH_of_nonempty_interior, dimH_segment, dimH_univ, dimH_univ_eq_finrank, dimH_univ_pi, dimH_univ_pi_fin, hausdorffMeasure_of_finrank_lt, dimH_zero, dimH_zero, dimH_zero, bsupr_limsup_dimH, dense_compl_of_dimH_lt_finrank, dimH_bUnion, dimH_coe_finset, dimH_countable, dimH_def, dimH_empty, dimH_eq_iInf, dimH_finite, dimH_iUnion, dimH_image_le_of_locally_holder_on, dimH_image_le_of_locally_lipschitzOn, dimH_le, dimH_le_of_hausdorffMeasure_ne_top, dimH_mono, dimH_of_hausdorffMeasure_ne_zero_ne_top, dimH_orthogonalProjection_le, dimH_range_le_of_locally_holder_on, dimH_range_le_of_locally_lipschitzOn, dimH_sUnion, dimH_singleton, dimH_subsingleton, dimH_union, exists_mem_nhdsWithin_lt_dimH_of_lt_dimH, hausdorffMeasure_of_dimH_lt, hausdorffMeasure_of_lt_dimH, iSup_limsup_dimH, le_dimH_of_hausdorffMeasure_eq_top, le_dimH_of_hausdorffMeasure_ne_zero, measure_zero_of_dimH_lt | 66 |