Documentation Verification Report

HausdorffDistance

πŸ“ Source: Mathlib/Topology/MetricSpace/HausdorffDistance.lean

Statistics

MetricCount
DefinitionshausdorffEdist, infEdist, hausdorffDist, hausdorffEDist, infDist, infEDist, infNndist
7
Theoremscontinuous_infEdist, disjoint_closedBall_of_lt_infEdist, edist_le_infEdist_add_ediam, empty_or_nonempty_of_hausdorffEdist_ne_top, exists_edist_lt_of_hausdorffEdist_lt, exists_pos_forall_lt_edist, exists_real_pos_lt_infEdist_of_notMem_closure, hausdorffEdist_closure, hausdorffEdist_closure₁, hausdorffEdist_closureβ‚‚, hausdorffEdist_comm, hausdorffEdist_def, hausdorffEdist_empty, hausdorffEdist_iUnion_le, hausdorffEdist_image, hausdorffEdist_le_ediam, hausdorffEdist_le_of_infEdist, hausdorffEdist_le_of_mem_edist, hausdorffEdist_prod_le, hausdorffEdist_self, hausdorffEdist_self_closure, hausdorffEdist_singleton, hausdorffEdist_triangle, hausdorffEdist_union_le, hausdorffEdist_zero_iff_closure_eq_closure, hausdorffEdist_zero_iff_eq_of_closed, infEdist_anti, infEdist_biUnion, infEdist_closure, infEdist_closure_pos_iff_notMem_closure, infEdist_empty, infEdist_iUnion, infEdist_image, infEdist_le_edist_add_infEdist, infEdist_le_edist_of_mem, infEdist_le_hausdorffEdist_of_mem, infEdist_le_infEdist_add_edist, infEdist_le_infEdist_add_hausdorffEdist, infEdist_lt_iff, infEdist_pos_iff_notMem_closure, infEdist_prod, infEdist_singleton, infEdist_smul, infEdist_union, infEdist_vadd, infEdist_zero_of_mem, le_infEdist, mem_closure_iff_infEdist_zero, mem_iff_infEdist_zero_of_closed, nonempty_of_hausdorffEdist_ne_top, exists_infDist_eq_dist, hausdorffDist_zero_iff_eq, hausdorffEDist_zero_iff, mem_iff_infDist_zero, notMem_iff_infDist_pos, exists_infDist_eq_dist, exists_infEDist_eq_edist, exists_infEdist_eq_edist, exists_iUnion_isClosed, ball_infDist_compl_subset, ball_infDist_subset_compl, coe_infNndist, continuousAt_inv_infDist_pt, continuous_infDist_pt, continuous_infEDist, continuous_infNndist_pt, disjoint_ball_infDist, disjoint_closedBall_of_lt_infDist, disjoint_closedEBall_of_lt_infEDist, dist_le_infDist_add_diam, edist_le_infEDist_add_ediam, empty_or_nonempty_of_hausdorffEDist_ne_top, exists_dist_lt_of_hausdorffDist_lt, exists_dist_lt_of_hausdorffDist_lt', exists_edist_lt_of_hausdorffEDist_lt, exists_mem_closure_infDist_eq_dist, exists_pos_forall_lt_edist, exists_real_pos_lt_infEDist_of_notMem_closure, hausdorffDist_closure, hausdorffDist_closure₁, hausdorffDist_closureβ‚‚, hausdorffDist_comm, hausdorffDist_empty, hausdorffDist_empty', hausdorffDist_image, hausdorffDist_le_diam, hausdorffDist_le_of_infDist, hausdorffDist_le_of_mem_dist, hausdorffDist_nonneg, hausdorffDist_self_closure, hausdorffDist_self_zero, hausdorffDist_singleton, hausdorffDist_triangle, hausdorffDist_triangle', hausdorffDist_zero_iff_closure_eq_closure, hausdorffEDist_closure, hausdorffEDist_closure_left, hausdorffEDist_closure_right, hausdorffEDist_comm, hausdorffEDist_def, hausdorffEDist_empty, hausdorffEDist_iUnion_le, hausdorffEDist_image, hausdorffEDist_le_ediam, hausdorffEDist_le_of_infEDist, hausdorffEDist_le_of_mem_edist, hausdorffEDist_ne_top_of_nonempty_of_bounded, hausdorffEDist_prod_le, hausdorffEDist_self, hausdorffEDist_self_closure, hausdorffEDist_singleton, hausdorffEDist_triangle, hausdorffEDist_union_le, hausdorffEDist_zero_iff_closure_eq_closure, hausdorffEdist_ne_top_of_nonempty_of_bounded, infDist_closure, infDist_empty, infDist_eq_iInf, infDist_image, infDist_inter_closedBall_of_mem, infDist_le_dist_of_mem, infDist_le_hausdorffDist_of_mem, infDist_le_infDist_add_dist, infDist_le_infDist_add_hausdorffDist, infDist_le_infDist_of_subset, infDist_lt_iff, infDist_nonneg, infDist_pos_iff_notMem_closure, infDist_singleton, infDist_zero_of_mem, infDist_zero_of_mem_closure, infEDist_anti, infEDist_biUnion, infEDist_closure, infEDist_closure_pos_iff_notMem_closure, infEDist_empty, infEDist_eq_top_iff, infEDist_iUnion, infEDist_image, infEDist_le_edist_add_infEDist, infEDist_le_edist_of_mem, infEDist_le_hausdorffEDist_of_mem, infEDist_le_infEDist_add_edist, infEDist_le_infEDist_add_hausdorffEDist, infEDist_lt_iff, infEDist_ne_top, infEDist_pos_iff_notMem_closure, infEDist_prod, infEDist_singleton, infEDist_smul, infEDist_union, infEDist_vadd, infEDist_zero_of_mem, infEdist_eq_top_iff, infEdist_ne_top, isGLB_infDist, le_infDist, le_infEDist, lipschitz_infDist_pt, lipschitz_infNndist_pt, mem_closure_iff_infDist_zero, mem_closure_iff_infEDist_zero, mem_iff_infEDist_zero_of_closed, nonempty_of_hausdorffEDist_ne_top, notMem_of_dist_lt_infDist, uniformContinuous_infDist_pt, uniformContinuous_infNndist_pt
167
Total174

EMetric

Definitions

NameCategoryTheorems
hausdorffEdist πŸ“–CompOpβ€”
infEdist πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_infEdist πŸ“–mathematicalβ€”Continuous
ENNReal
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ENNReal.instTopologicalSpace
Metric.infEDist
β€”Metric.continuous_infEDist
disjoint_closedBall_of_lt_infEdist πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.infEDist
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Metric.closedEBall
β€”Metric.disjoint_closedEBall_of_lt_infEDist
edist_le_infEdist_add_ediam πŸ“–mathematicalSet
Set.instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Metric.infEDist
Metric.ediam
β€”Metric.edist_le_infEDist_add_ediam
empty_or_nonempty_of_hausdorffEdist_ne_top πŸ“–mathematicalβ€”Set
Set.instEmptyCollection
Set.Nonempty
β€”Metric.empty_or_nonempty_of_hausdorffEDist_ne_top
exists_edist_lt_of_hausdorffEdist_lt πŸ“–mathematicalSet
Set.instMembership
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.hausdorffEDist
EDist.edist
PseudoEMetricSpace.toEDist
β€”Metric.exists_edist_lt_of_hausdorffEDist_lt
exists_pos_forall_lt_edist πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
ENNReal
ENNReal.instPartialOrder
ENNReal.ofNNReal
EDist.edist
PseudoEMetricSpace.toEDist
β€”Metric.exists_pos_forall_lt_edist
exists_real_pos_lt_infEdist_of_notMem_closure πŸ“–mathematicalSet
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Real
Real.instLT
Real.instZero
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.ofReal
Metric.infEDist
β€”Metric.exists_real_pos_lt_infEDist_of_notMem_closure
hausdorffEdist_closure πŸ“–mathematicalβ€”Metric.hausdorffEDist
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”Metric.hausdorffEDist_closure
hausdorffEdist_closure₁ πŸ“–mathematicalβ€”Metric.hausdorffEDist
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”Metric.hausdorffEDist_closure_left
hausdorffEdist_closureβ‚‚ πŸ“–mathematicalβ€”Metric.hausdorffEDist
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”Metric.hausdorffEDist_closure_right
hausdorffEdist_comm πŸ“–mathematicalβ€”Metric.hausdorffEDistβ€”Metric.hausdorffEDist_comm
hausdorffEdist_def πŸ“–mathematicalβ€”Metric.hausdorffEDist
ENNReal
ENNReal.instMax
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Set
Set.instMembership
Metric.infEDist
β€”Metric.hausdorffEDist_def
hausdorffEdist_empty πŸ“–mathematicalSet.NonemptyMetric.hausdorffEDist
Set
Set.instEmptyCollection
Top.top
ENNReal
instTopENNReal
β€”Metric.hausdorffEDist_empty
hausdorffEdist_iUnion_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.hausdorffEDist
Set.iUnion
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”Metric.hausdorffEDist_iUnion_le
hausdorffEdist_image πŸ“–mathematicalIsometryMetric.hausdorffEDist
Set.image
β€”Metric.hausdorffEDist_image
hausdorffEdist_le_ediam πŸ“–mathematicalSet.NonemptyENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.hausdorffEDist
Metric.ediam
Set
Set.instUnion
β€”Metric.hausdorffEDist_le_ediam
hausdorffEdist_le_of_infEdist πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.infEDist
Metric.hausdorffEDistβ€”Metric.hausdorffEDist_le_of_infEDist
hausdorffEdist_le_of_mem_edist πŸ“–mathematicalSet
Set.instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Metric.hausdorffEDistβ€”Metric.hausdorffEDist_le_of_mem_edist
hausdorffEdist_prod_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.hausdorffEDist
Prod.pseudoEMetricSpaceMax
SProd.sprod
Set
Set.instSProd
ENNReal.instMax
β€”Metric.hausdorffEDist_prod_le
hausdorffEdist_self πŸ“–mathematicalβ€”Metric.hausdorffEDist
ENNReal
instZeroENNReal
β€”Metric.hausdorffEDist_self
hausdorffEdist_self_closure πŸ“–mathematicalβ€”Metric.hausdorffEDist
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ENNReal
instZeroENNReal
β€”Metric.hausdorffEDist_self_closure
hausdorffEdist_singleton πŸ“–mathematicalβ€”Metric.hausdorffEDist
Set
Set.instSingletonSet
EDist.edist
PseudoEMetricSpace.toEDist
β€”Metric.hausdorffEDist_singleton
hausdorffEdist_triangle πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.hausdorffEDist
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”Metric.hausdorffEDist_triangle
hausdorffEdist_union_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.hausdorffEDist
Set
Set.instUnion
ENNReal.instMax
β€”Metric.hausdorffEDist_union_le
hausdorffEdist_zero_iff_closure_eq_closure πŸ“–mathematicalβ€”Metric.hausdorffEDist
ENNReal
instZeroENNReal
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”Metric.hausdorffEDist_zero_iff_closure_eq_closure
hausdorffEdist_zero_iff_eq_of_closed πŸ“–mathematicalβ€”Metric.hausdorffEDist
ENNReal
instZeroENNReal
β€”IsClosed.hausdorffEDist_zero_iff
infEdist_anti πŸ“–mathematicalSet
Set.instHasSubset
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.infEDist
β€”Metric.infEDist_anti
infEdist_biUnion πŸ“–mathematicalβ€”Metric.infEDist
Set.iUnion
Set
Set.instMembership
iInf
ENNReal
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”Metric.infEDist_biUnion
infEdist_closure πŸ“–mathematicalβ€”Metric.infEDist
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”Metric.infEDist_closure
infEdist_closure_pos_iff_notMem_closure πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Metric.infEDist
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Set
Set.instMembership
β€”Metric.infEDist_closure_pos_iff_notMem_closure
infEdist_empty πŸ“–mathematicalβ€”Metric.infEDist
Set
Set.instEmptyCollection
Top.top
ENNReal
instTopENNReal
β€”Metric.infEDist_empty
infEdist_iUnion πŸ“–mathematicalβ€”Metric.infEDist
Set.iUnion
iInf
ENNReal
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”Metric.infEDist_iUnion
infEdist_image πŸ“–mathematicalIsometryMetric.infEDist
Set.image
β€”Metric.infEDist_image
infEdist_le_edist_add_infEdist πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.infEDist
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
EDist.edist
PseudoEMetricSpace.toEDist
β€”Metric.infEDist_le_edist_add_infEDist
infEdist_le_edist_of_mem πŸ“–mathematicalSet
Set.instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.infEDist
EDist.edist
PseudoEMetricSpace.toEDist
β€”Metric.infEDist_le_edist_of_mem
infEdist_le_hausdorffEdist_of_mem πŸ“–mathematicalSet
Set.instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.infEDist
Metric.hausdorffEDist
β€”Metric.infEDist_le_hausdorffEDist_of_mem
infEdist_le_infEdist_add_edist πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.infEDist
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
EDist.edist
PseudoEMetricSpace.toEDist
β€”Metric.infEDist_le_infEDist_add_edist
infEdist_le_infEdist_add_hausdorffEdist πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.infEDist
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Metric.hausdorffEDist
β€”Metric.infEDist_le_infEDist_add_hausdorffEDist
infEdist_lt_iff πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.infEDist
Set
Set.instMembership
EDist.edist
PseudoEMetricSpace.toEDist
β€”Metric.infEDist_lt_iff
infEdist_pos_iff_notMem_closure πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Metric.infEDist
Set
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”Metric.infEDist_pos_iff_notMem_closure
infEdist_prod πŸ“–mathematicalβ€”Metric.infEDist
Prod.pseudoEMetricSpaceMax
SProd.sprod
Set
Set.instSProd
ENNReal
ENNReal.instMax
β€”Metric.infEDist_prod
infEdist_singleton πŸ“–mathematicalβ€”Metric.infEDist
Set
Set.instSingletonSet
EDist.edist
PseudoEMetricSpace.toEDist
β€”Metric.infEDist_singleton
infEdist_smul πŸ“–mathematicalβ€”Metric.infEDist
Set
Set.smulSet
β€”Metric.infEDist_smul
infEdist_union πŸ“–mathematicalβ€”Metric.infEDist
Set
Set.instUnion
ENNReal
ENNReal.instMin
β€”Metric.infEDist_union
infEdist_vadd πŸ“–mathematicalβ€”Metric.infEDist
HVAdd.hVAdd
instHVAdd
Set
Set.vaddSet
β€”Metric.infEDist_vadd
infEdist_zero_of_mem πŸ“–mathematicalSet
Set.instMembership
Metric.infEDist
ENNReal
instZeroENNReal
β€”Metric.infEDist_zero_of_mem
le_infEdist πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.infEDist
EDist.edist
PseudoEMetricSpace.toEDist
β€”Metric.le_infEDist
mem_closure_iff_infEdist_zero πŸ“–mathematicalβ€”Set
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Metric.infEDist
ENNReal
instZeroENNReal
β€”Metric.mem_closure_iff_infEDist_zero
mem_iff_infEdist_zero_of_closed πŸ“–mathematicalβ€”Set
Set.instMembership
Metric.infEDist
ENNReal
instZeroENNReal
β€”Metric.mem_iff_infEDist_zero_of_closed
nonempty_of_hausdorffEdist_ne_top πŸ“–β€”Set.Nonemptyβ€”β€”Metric.nonempty_of_hausdorffEDist_ne_top

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
exists_infDist_eq_dist πŸ“–mathematicalSet.NonemptySet
Set.instMembership
Metric.infDist
Dist.dist
PseudoMetricSpace.toDist
β€”Metric.infDist_inter_closedBall_of_mem
IsCompact.inter_left
ProperSpace.isCompact_closedBall
Metric.mem_closedBall
le_rfl
IsCompact.exists_infDist_eq_dist
hausdorffDist_zero_iff_eq πŸ“–mathematicalβ€”Metric.hausdorffDist
Real
Real.instZero
β€”hausdorffEDist_zero_iff
hausdorffEDist_zero_iff πŸ“–mathematicalβ€”Metric.hausdorffEDist
ENNReal
instZeroENNReal
β€”Metric.hausdorffEDist_zero_iff_closure_eq_closure
closure_eq
mem_iff_infDist_zero πŸ“–mathematicalSet.NonemptySet
Set.instMembership
Metric.infDist
Real
Real.instZero
β€”Metric.mem_closure_iff_infDist_zero
closure_eq
notMem_iff_infDist_pos πŸ“–mathematicalSet.NonemptySet
Set.instMembership
Real
Real.instLT
Real.instZero
Metric.infDist
β€”mem_iff_infDist_zero
LE.le.lt_iff_ne'
Metric.infDist_nonneg

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
exists_infDist_eq_dist πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Set.Nonempty
Set
Set.instMembership
Metric.infDist
Dist.dist
PseudoMetricSpace.toDist
β€”exists_infEDist_eq_edist
Metric.infDist.eq_1
dist_edist
exists_infEDist_eq_edist πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Set.Nonempty
Set
Set.instMembership
Metric.infEDist
EDist.edist
PseudoEMetricSpace.toEDist
β€”Continuous.edist
continuous_const
continuous_id'
exists_isMinOn
instClosedIicTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
Continuous.continuousOn
le_antisymm
Metric.infEDist_le_edist_of_mem
Metric.le_infEDist
exists_infEdist_eq_edist πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Set.Nonempty
Set
Set.instMembership
Metric.infEDist
EDist.edist
PseudoEMetricSpace.toEDist
β€”exists_infEDist_eq_edist

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
exists_iUnion_isClosed πŸ“–mathematicalIsOpen
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
IsClosed
Set
Set.instHasSubset
Set.iUnion
Monotone
Nat.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
β€”exists_between
ENNReal.instDenselyOrdered
zero_lt_one
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
NeZero.charZero_one
ENNReal.instCharZero
LT.lt.ne'
LT.lt.trans_le
ENNReal.pow_pos
Metric.infEDist_zero_of_mem
IsClosed.preimage
Metric.continuous_infEDist
isClosed_Ici
instClosedIciTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
Set.Subset.antisymm
ENNReal.instCanonicallyOrderedAdd
Metric.mem_iff_infEDist_zero_of_closed
isClosed_compl
ENNReal.tendsto_pow_atTop_nhds_zero_of_lt_one
Filter.Eventually.exists
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_order
LT.lt.le
le_trans
pow_le_pow_right_of_le_one'
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid

Metric

Definitions

NameCategoryTheorems
hausdorffDist πŸ“–CompOp
26 mathmath: hausdorffDist_empty', GromovHausdorff.hausdorffDist_optimal, hausdorffDist_le_of_mem_dist, hausdorffDist_triangle, hausdorffDist_self_closure, hausdorffDist_zero_iff_closure_eq_closure, hausdorffDist_triangle', hausdorffDist_empty, GromovHausdorff.ghDist_le_hausdorffDist, hausdorffDist_self_zero, hausdorffDist_comm, GromovHausdorff.ghDist_eq_hausdorffDist, hausdorffDist_le_diam, GromovHausdorff.hausdorffDist_optimal_le_HD, hausdorffDist_closureβ‚‚, hausdorffDist_closure, hausdorffDist_image, IsClosed.hausdorffDist_zero_iff_eq, infDist_le_infDist_add_hausdorffDist, ConvexBody.hausdorffDist_coe, hausdorffDist_singleton, infDist_le_hausdorffDist_of_mem, hausdorffDist_le_of_infDist, hausdorffDist_nonneg, hausdorffDist_closure₁, NonemptyCompacts.dist_eq
hausdorffEDist πŸ“–CompOp
49 mathmath: EMetric.hausdorffEdist_iUnion_le, hausdorffEDist_closure, hausdorffEDist_def, hausdorffEDist_iUnion_le, EMetric.hausdorffEdist_empty, hausdorffEDist_le_of_mem_edist, TopologicalSpace.Compacts.edist_eq, EMetric.hausdorffEdist_comm, hausdorffEDist_le_of_mem_hausdorffEntourage, hausdorffEDist_closure_right, hausdorffEDist_self_closure, hausdorffEDist_image, EMetric.infEdist_le_hausdorffEdist_of_mem, hausdorffEDist_le_of_infEDist, infEDist_le_hausdorffEDist_of_mem, hausdorffEDist_le_ediam, EMetric.hausdorffEdist_self, EMetric.hausdorffEdist_le_ediam, EMetric.hausdorffEdist_image, EMetric.hausdorffEdist_le_of_mem_edist, TopologicalSpace.Closeds.edist_eq, hausdorffEDist_empty, hausdorffEDist_self, EMetric.infEdist_le_infEdist_add_hausdorffEdist, EMetric.hausdorffEdist_le_of_mem_hausdorffEntourage, IsClosed.hausdorffEDist_zero_iff, hausdorffEDist_zero_iff_closure_eq_closure, hausdorffEDist_prod_le, hausdorffEDist_comm, hausdorffEDist_closure_left, EMetric.hausdorffEdist_union_le, EMetric.hausdorffEdist_zero_iff_closure_eq_closure, hausdorffEDist_triangle, infEDist_le_infEDist_add_hausdorffEDist, EMetric.hausdorffEdist_zero_iff_eq_of_closed, EMetric.hausdorffEdist_triangle, EMetric.hausdorffEdist_prod_le, hausdorffEDist_union_le, hausdorffEDist_singleton, EMetric.hausdorffEdist_def, EMetric.hausdorffEdist_le_of_infEdist, EMetric.hausdorffEdist_closure, ConvexBody.hausdorffEDist_coe, ConvexBody.hausdorffEdist_coe, EMetric.Closeds.edist_eq, EMetric.hausdorffEdist_self_closure, EMetric.hausdorffEdist_singleton, EMetric.hausdorffEdist_closureβ‚‚, EMetric.hausdorffEdist_closure₁
infDist πŸ“–CompOp
51 mathmath: disjoint_ball_infDist, QuotientGroup.norm_mk, infDist_le_dist_of_mem, IsCompact.exists_infDist_eq_dist, TopologicalSpace.Opens.CompleteCopy.dist_eq, IsClosed.mem_iff_infDist_zero, infDist_image, continuousAt_inv_infDist_pt, ball_infDist_compl_subset, mem_closure_iff_infDist_zero, ball_infDist_subset_compl, infDist_inter_closedBall_of_mem, QuotientAddGroup.norm_eq_infDist, QuotientAddGroup.norm_mk, uniformContinuous_infDist_Hausdorff_dist, dist_le_infDist_add_diam, infDist_zero_of_mem, infDist_closure, infDist_empty, le_infDist, infDist_singleton, infDist_le_infDist_of_subset, infDist_smulβ‚€, mem_thickening_iff_infDist_lt, EuclideanGeometry.Sphere.IsTangent.infDist_eq_radius, Measurable.infDist, coe_infNndist, infDist_lt_iff, EuclideanGeometry.dist_orthogonalProjection_eq_infDist, infDist_le_infDist_add_dist, continuous_infDist_pt, lipschitz_infDist_pt, infDist_pos_iff_notMem_closure, QuotientGroup.norm_eq_infDist, lipschitz_infDist, IsClosed.exists_infDist_eq_dist, infDist_le_infDist_add_hausdorffDist, lipschitz_infDist_set, IsCompact.exists_mem_frontier_infDist_compl_eq_dist, infDist_zero_of_mem_closure, closedBall_infDist_compl_subset_closure, exists_mem_closure_infDist_eq_dist, infDist_eq_iInf, isGLB_infDist, infDist_le_hausdorffDist_of_mem, measurable_infDist, infDist_nonneg, uniformContinuous_infDist_pt, EuclideanGeometry.Sphere.infDist_eq_radius_iff_isTangent, IsClosed.notMem_iff_infDist_pos, exists_mem_frontier_infDist_compl_eq_dist
infEDist πŸ“–CompOp
91 mathmath: EMetric.infEdist_union, infEDist_vadd, infEdist_inv, EMetric.le_infEdist, hausdorffEDist_def, mem_thickening_iff_infEDist_lt, infEdist_thickening, mem_cthickening_iff, infEDist_le_edist_of_mem, EMetric.infEdist_pos_iff_notMem_closure, infEDist_neg_neg, infEDist_le_infEDist_add_edist, cthickening_eq_preimage_infEdist, infEdist_le_infEdist_thickening_add, thickening_eq_preimage_infEDist, EMetric.infEdist_smul, EMetric.infEdist_empty, measurable_infEDist, EMetric.mem_closure_iff_infEdist_zero, EMetric.infEdist_le_hausdorffEdist_of_mem, infEDist_le_hausdorffEDist_of_mem, EMetric.infEdist_closure_pos_iff_notMem_closure, infEDist_smulβ‚€, Measurable.infEdist, EMetric.infEdist_image, EMetric.infEdist_anti, EMetric.infEdist_singleton, EMetric.infEdist_vadd, frontier_thickening_subset, measurable_infEdist, infEDist_neg, EMetric.infEdist_biUnion, cthickening_eq_preimage_infEDist, infEdist_smulβ‚€, le_infEDist, mem_closure_iff_infEDist_zero, EMetric.infEdist_zero_of_mem, infEDist_union, EMetric.infEdist_le_infEdist_add_hausdorffEdist, edist_le_infEDist_add_ediam, EMetric.infEdist_le_edist_add_infEdist, infEdist_inv_inv, infEDist_closure_pos_iff_notMem_closure, EMetric.infEdist_iUnion, TopologicalSpace.Closeds.continuous_infEDist, infEDist_anti, EMetric.edist_le_infEdist_add_ediam, infEdist_eq_top_iff, EMetric.infEdist_closure, infEDist_prod, infEDist_thickening, infEdist_le_infEdist_cthickening_add, EMetric.infEdist_le_edist_of_mem, infEDist_iUnion, infEdist_cthickening, infEDist_image, infEDist_singleton, mem_thickening_iff_infEdist_lt, infEDist_cthickening, infEDist_le_infEDist_thickening_add, infEDist_le_infEDist_add_hausdorffEDist, infEDist_empty, infEDist_closure, EMetric.infEdist_lt_iff, infEDist_eq_top_iff, EMetric.infEdist_prod, EMetric.infEdist_le_infEdist_add_edist, continuous_infEDist, EMetric.hausdorffEdist_def, IsCompact.exists_infEdist_eq_edist, EMetric.mem_iff_infEdist_zero_of_closed, infEDist_le_infEDist_cthickening_add, infEdist_neg, frontier_cthickening_subset, infEDist_zero_of_mem, IsCompact.exists_infEDist_eq_edist, infEDist_inv_inv, EMetric.continuous_infEdist, infEdist_neg_neg, mem_iff_infEDist_zero_of_closed, infEDist_lt_iff, infEDist_smul, infEDist_inv, exists_real_pos_lt_infEDist_of_notMem_closure, Measurable.infEDist, EMetric.exists_real_pos_lt_infEdist_of_notMem_closure, infEDist_biUnion, EMetric.continuous_infEdist_hausdorffEdist, infEDist_le_edist_add_infEDist, thickening_eq_preimage_infEdist, infEDist_pos_iff_notMem_closure
infNndist πŸ“–CompOp
7 mathmath: uniformContinuous_infNndist_pt, EuclideanGeometry.dist_orthogonalProjection_eq_infNndist, coe_infNndist, continuous_infNndist_pt, measurable_infNndist, lipschitz_infNndist_pt, Measurable.infNndist

Theorems

NameKindAssumesProvesValidatesDepends On
ball_infDist_compl_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
ball
infDist
Compl.compl
Set.instCompl
β€”LE.le.trans_eq
ball_infDist_subset_compl
compl_compl
ball_infDist_subset_compl πŸ“–mathematicalβ€”Set
Set.instHasSubset
ball
infDist
Compl.compl
Set.instCompl
β€”Disjoint.subset_compl_right
disjoint_ball_infDist
coe_infNndist πŸ“–mathematicalβ€”NNReal.toReal
infNndist
infDist
β€”β€”
continuousAt_inv_infDist_pt πŸ“–mathematicalSet
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
ContinuousAt
Real
Real.pseudoMetricSpace
Real.instInv
infDist
β€”Set.eq_empty_or_nonempty
infDist_empty
ContinuousAt.invβ‚€
IsTopologicalDivisionRing.toContinuousInvβ‚€
instIsTopologicalDivisionRingReal
Continuous.continuousAt
continuous_infDist_pt
mem_closure_iff_infDist_zero
continuous_infDist_pt πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
infDist
β€”UniformContinuous.continuous
uniformContinuous_infDist_pt
continuous_infEDist πŸ“–mathematicalβ€”Continuous
ENNReal
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ENNReal.instTopologicalSpace
infEDist
β€”continuous_of_le_add_edist
one_mul
continuous_infNndist_pt πŸ“–mathematicalβ€”Continuous
NNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NNReal.instTopologicalSpace
infNndist
β€”UniformContinuous.continuous
uniformContinuous_infNndist_pt
disjoint_ball_infDist πŸ“–mathematicalβ€”Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
ball
infDist
β€”Set.disjoint_left
notMem_of_dist_lt_infDist
mem_ball'
disjoint_closedBall_of_lt_infDist πŸ“–mathematicalReal
Real.instLT
infDist
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
closedBall
β€”Disjoint.mono_left
closedBall_subset_ball
disjoint_ball_infDist
disjoint_closedEBall_of_lt_infEDist πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
infEDist
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
closedEBall
β€”Set.disjoint_left
lt_irrefl
infEDist_le_edist_of_mem
PseudoEMetricSpace.edist_comm
mem_closedEBall
dist_le_infDist_add_diam πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
Set
Set.instMembership
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Real.instAdd
infDist
diam
β€”infDist.eq_1
diam.eq_1
dist_edist
ENNReal.toReal_le_add
edist_le_infEDist_add_ediam
infEDist_ne_top
Bornology.IsBounded.ediam_ne_top
edist_le_infEDist_add_ediam πŸ“–mathematicalSet
Set.instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
infEDist
ediam
β€”ENNReal.iInf_add
le_iInfβ‚‚
PseudoEMetricSpace.edist_triangle
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
le_rfl
edist_le_ediam_of_mem
empty_or_nonempty_of_hausdorffEDist_ne_top πŸ“–mathematicalβ€”Set
Set.instEmptyCollection
Set.Nonempty
β€”Set.eq_empty_or_nonempty
nonempty_of_hausdorffEDist_ne_top
hausdorffEDist_comm
exists_dist_lt_of_hausdorffDist_lt πŸ“–mathematicalSet
Set.instMembership
Real
Real.instLT
hausdorffDist
Dist.dist
PseudoMetricSpace.toDist
β€”lt_of_le_of_lt
hausdorffDist_nonneg
ENNReal.toReal_lt_toReal
ENNReal.ofReal_ne_top
ENNReal.toReal_ofReal
le_of_lt
hausdorffDist.eq_1
exists_edist_lt_of_hausdorffEDist_lt
ENNReal.ofReal_lt_ofReal_iff
edist_dist
exists_dist_lt_of_hausdorffDist_lt' πŸ“–mathematicalSet
Set.instMembership
Real
Real.instLT
hausdorffDist
Dist.dist
PseudoMetricSpace.toDist
β€”dist_comm
exists_dist_lt_of_hausdorffDist_lt
hausdorffDist_comm
hausdorffEDist_comm
exists_edist_lt_of_hausdorffEDist_lt πŸ“–mathematicalSet
Set.instMembership
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
hausdorffEDist
EDist.edist
PseudoEMetricSpace.toEDist
β€”infEDist_lt_iff
infEDist_le_hausdorffEDist_of_mem
exists_mem_closure_infDist_eq_dist πŸ“–mathematicalSet.NonemptySet
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
infDist
Dist.dist
PseudoMetricSpace.toDist
β€”infDist_closure
IsClosed.exists_infDist_eq_dist
isClosed_closure
Set.Nonempty.closure
exists_pos_forall_lt_edist πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
ENNReal
ENNReal.instPartialOrder
ENNReal.ofNNReal
EDist.edist
PseudoEMetricSpace.toEDist
β€”Set.eq_empty_or_nonempty
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
instIsEmptyFalse
IsCompact.exists_isMinOn
instClosedIicTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
Continuous.continuousOn
continuous_infEDist
pos_iff_ne_zero
ENNReal.instCanonicallyOrderedAdd
Disjoint.le_bot
mem_iff_infEDist_zero_of_closed
ENNReal.lt_iff_exists_nnreal_btwn
ENNReal.coe_pos
LT.lt.trans_le
le_infEDist
exists_real_pos_lt_infEDist_of_notMem_closure πŸ“–mathematicalSet
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Real
Real.instLT
Real.instZero
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.ofReal
infEDist
β€”ENNReal.lt_iff_exists_real_btwn
infEDist_pos_iff_notMem_closure
ENNReal.ofReal_pos
hausdorffDist_closure πŸ“–mathematicalβ€”hausdorffDist
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”hausdorffEDist_closure_right
hausdorffEDist_closure_left
hausdorffDist_closure₁ πŸ“–mathematicalβ€”hausdorffDist
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”hausdorffEDist_closure_left
hausdorffDist_closureβ‚‚ πŸ“–mathematicalβ€”hausdorffDist
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”hausdorffEDist_closure_right
hausdorffDist_comm πŸ“–mathematicalβ€”hausdorffDistβ€”hausdorffEDist_comm
hausdorffDist_empty πŸ“–mathematicalβ€”hausdorffDist
Set
Set.instEmptyCollection
Real
Real.instZero
β€”Set.eq_empty_or_nonempty
hausdorffDist_self_zero
hausdorffEDist_empty
hausdorffDist_empty' πŸ“–mathematicalβ€”hausdorffDist
Set
Set.instEmptyCollection
Real
Real.instZero
β€”hausdorffDist_comm
hausdorffDist_empty
hausdorffDist_image πŸ“–mathematicalIsometry
PseudoMetricSpace.toPseudoEMetricSpace
hausdorffDist
Set.image
β€”hausdorffEDist_image
hausdorffDist_le_diam πŸ“–mathematicalSet.Nonempty
Bornology.IsBounded
PseudoMetricSpace.toBornology
Real
Real.instLE
hausdorffDist
diam
Set
Set.instUnion
β€”hausdorffDist_le_of_mem_dist
diam_nonneg
dist_le_diam_of_mem
Bornology.IsBounded.union
Set.subset_union_left
Set.subset_union_right
hausdorffDist_le_of_infDist πŸ“–mathematicalReal
Real.instLE
Real.instZero
infDist
hausdorffDistβ€”Set.eq_empty_or_nonempty
hausdorffDist_empty'
hausdorffDist_empty
hausdorffEDist_le_of_infEDist
ENNReal.le_ofReal_iff_toReal_le
infEDist_ne_top
ENNReal.toReal_le_of_le_ofReal
hausdorffDist_le_of_mem_dist πŸ“–mathematicalReal
Real.instLE
Real.instZero
Set
Set.instMembership
Dist.dist
PseudoMetricSpace.toDist
hausdorffDistβ€”hausdorffDist_le_of_infDist
le_trans
infDist_le_dist_of_mem
hausdorffDist_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
hausdorffDist
β€”β€”
hausdorffDist_self_closure πŸ“–mathematicalβ€”hausdorffDist
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real
Real.instZero
β€”hausdorffEDist_self_closure
hausdorffDist_self_zero πŸ“–mathematicalβ€”hausdorffDist
Real
Real.instZero
β€”hausdorffEDist_self
hausdorffDist_singleton πŸ“–mathematicalβ€”hausdorffDist
Set
Set.instSingletonSet
Dist.dist
PseudoMetricSpace.toDist
β€”hausdorffDist.eq_1
hausdorffEDist_singleton
dist_edist
hausdorffDist_triangle πŸ“–mathematicalβ€”Real
Real.instLE
hausdorffDist
Real.instAdd
β€”ENNReal.toReal_le_add'
hausdorffEDist_triangle
not_imp_not
ne_top_of_le_ne_top
ENNReal.add_ne_top
hausdorffEDist_comm
hausdorffDist_triangle' πŸ“–mathematicalβ€”Real
Real.instLE
hausdorffDist
Real.instAdd
β€”hausdorffDist_triangle
hausdorffEDist_comm
hausdorffDist_comm
add_comm
hausdorffDist_zero_iff_closure_eq_closure πŸ“–mathematicalβ€”hausdorffDist
Real
Real.instZero
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”β€”
hausdorffEDist_closure πŸ“–mathematicalβ€”hausdorffEDist
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”hausdorffEDist_closure_right
hausdorffEDist_closure_left
hausdorffEDist_closure_left πŸ“–mathematicalβ€”hausdorffEDist
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”le_antisymm
hausdorffEDist_triangle
hausdorffEDist_comm
hausdorffEDist_self_closure
zero_add
hausdorffEDist_closure_right πŸ“–mathematicalβ€”hausdorffEDist
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”hausdorffEDist_comm
hausdorffEDist_closure_left
hausdorffEDist_comm πŸ“–mathematicalβ€”hausdorffEDistβ€”hausdorffEDist_def
sup_comm
hausdorffEDist_def πŸ“–mathematicalβ€”hausdorffEDist
ENNReal
ENNReal.instMax
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Set
Set.instMembership
infEDist
β€”β€”
hausdorffEDist_empty πŸ“–mathematicalSet.NonemptyhausdorffEDist
Set
Set.instEmptyCollection
Top.top
ENNReal
instTopENNReal
β€”infEDist_le_hausdorffEDist_of_mem
infEDist_empty
hausdorffEDist_iUnion_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
hausdorffEDist
Set.iUnion
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”hausdorffEDist_def
iSup_iUnion
infEDist_iUnion
LE.le.trans
iInf_le
le_iSup_of_le
le_max_of_le_left
le_iSupβ‚‚_of_le
le_rfl
le_max_of_le_right
hausdorffEDist_image πŸ“–mathematicalIsometryhausdorffEDist
Set.image
β€”hausdorffEDist_def
iSup_image
iSup_congr_Prop
infEDist_image
hausdorffEDist_le_ediam πŸ“–mathematicalSet.NonemptyENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
hausdorffEDist
ediam
Set
Set.instUnion
β€”hausdorffEDist_le_of_mem_edist
edist_le_ediam_of_mem
Set.subset_union_left
Set.subset_union_right
hausdorffEDist_le_of_infEDist πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
infEDist
hausdorffEDistβ€”hausdorffEDist_def
hausdorffEDist_le_of_mem_edist πŸ“–mathematicalSet
Set.instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
hausdorffEDistβ€”hausdorffEDist_le_of_infEDist
le_trans
infEDist_le_edist_of_mem
hausdorffEDist_ne_top_of_nonempty_of_bounded πŸ“–β€”Set.Nonempty
Bornology.IsBounded
PseudoMetricSpace.toBornology
β€”β€”Bornology.IsBounded.subset_closedBall
hausdorffEDist_le_of_mem_edist
le_trans
le_max_left
edist_dist
ENNReal.ofReal_le_ofReal_iff
dist_nonneg
le_max_right
ne_top_of_le_ne_top
ENNReal.ofReal_ne_top
hausdorffEDist_prod_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
hausdorffEDist
Prod.pseudoEMetricSpaceMax
SProd.sprod
Set
Set.instSProd
ENNReal.instMax
β€”le_of_forall_ge
hausdorffEDist_def
iSup_congr_Prop
infEDist_prod
hausdorffEDist_self πŸ“–mathematicalβ€”hausdorffEDist
ENNReal
instZeroENNReal
β€”hausdorffEDist_def
sup_idem
infEDist_zero_of_mem
hausdorffEDist_self_closure πŸ“–mathematicalβ€”hausdorffEDist
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ENNReal
instZeroENNReal
β€”hausdorffEDist_zero_iff_closure_eq_closure
closure_closure
hausdorffEDist_singleton πŸ“–mathematicalβ€”hausdorffEDist
Set
Set.instSingletonSet
EDist.edist
PseudoEMetricSpace.toEDist
β€”hausdorffEDist_def
iSup_singleton
infEDist_singleton
PseudoEMetricSpace.edist_comm
max_self
hausdorffEDist_triangle πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
hausdorffEDist
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”hausdorffEDist_def
infEDist_le_infEDist_add_hausdorffEDist
le_imp_le_of_le_of_le
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
infEDist_le_hausdorffEDist_of_mem
le_refl
hausdorffEDist_comm
add_comm
hausdorffEDist_union_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
hausdorffEDist
Set
Set.instUnion
ENNReal.instMax
β€”Set.union_eq_iUnion
sup_eq_iSup
hausdorffEDist_iUnion_le
hausdorffEDist_zero_iff_closure_eq_closure πŸ“–mathematicalβ€”hausdorffEDist
ENNReal
instZeroENNReal
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”hausdorffEDist_def
Set.instReflSubset
Set.instAntisymmSubset
IsClosed.closure_subset_iff
isClosed_closure
hausdorffEdist_ne_top_of_nonempty_of_bounded πŸ“–β€”Set.Nonempty
Bornology.IsBounded
PseudoMetricSpace.toBornology
β€”β€”hausdorffEDist_ne_top_of_nonempty_of_bounded
infDist_closure πŸ“–mathematicalβ€”infDist
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”infEDist_closure
infDist_empty πŸ“–mathematicalβ€”infDist
Set
Set.instEmptyCollection
Real
Real.instZero
β€”infEDist_empty
infDist_eq_iInf πŸ“–mathematicalβ€”infDist
iInf
Real
Set.Elem
Real.instInfSet
Dist.dist
PseudoMetricSpace.toDist
Set
Set.instMembership
β€”infDist.eq_1
infEDist.eq_1
iInf_subtype'
ENNReal.toReal_iInf
edist_ne_top
dist_edist
infDist_image πŸ“–mathematicalIsometry
PseudoMetricSpace.toPseudoEMetricSpace
infDist
Set.image
β€”infEDist_image
infDist_inter_closedBall_of_mem πŸ“–mathematicalSet
Set.instMembership
infDist
Set.instInter
closedBall
Dist.dist
PseudoMetricSpace.toDist
β€”mem_closedBall
le_rfl
le_antisymm
not_lt
infDist_lt_iff
le_or_gt
LT.lt.not_ge
infDist_le_dist_of_mem
LT.lt.trans
dist_comm
infDist_le_infDist_of_subset
Set.inter_subset_left
infDist_le_dist_of_mem πŸ“–mathematicalSet
Set.instMembership
Real
Real.instLE
infDist
Dist.dist
PseudoMetricSpace.toDist
β€”dist_edist
infDist.eq_1
ENNReal.toReal_mono
edist_ne_top
infEDist_le_edist_of_mem
infDist_le_hausdorffDist_of_mem πŸ“–mathematicalSet
Set.instMembership
Real
Real.instLE
infDist
hausdorffDist
β€”ENNReal.toReal_mono
infEDist_le_hausdorffEDist_of_mem
infDist_le_infDist_add_dist πŸ“–mathematicalβ€”Real
Real.instLE
infDist
Real.instAdd
Dist.dist
PseudoMetricSpace.toDist
β€”infDist.eq_1
dist_edist
ENNReal.toReal_le_add'
infEDist_le_infEDist_add_edist
edist_ne_top
infDist_le_infDist_add_hausdorffDist πŸ“–mathematicalβ€”Real
Real.instLE
infDist
Real.instAdd
hausdorffDist
β€”ENNReal.toReal_le_add'
infEDist_le_infEDist_add_hausdorffEDist
infEDist_eq_top_iff
Set.not_nonempty_iff_eq_empty
nonempty_of_hausdorffEDist_ne_top
hausdorffEDist_comm
infDist_le_infDist_of_subset πŸ“–mathematicalSet
Set.instHasSubset
Set.Nonempty
Real
Real.instLE
infDist
β€”ENNReal.toReal_mono
infEDist_ne_top
infEDist_anti
infDist_lt_iff πŸ“–mathematicalSet.NonemptyReal
Real.instLT
infDist
Set
Set.instMembership
Dist.dist
PseudoMetricSpace.toDist
β€”le_infDist
infDist_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
infDist
β€”ENNReal.toReal_nonneg
infDist_pos_iff_notMem_closure πŸ“–mathematicalSet.NonemptySet
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real
Real.instLT
Real.instZero
infDist
β€”Iff.not
mem_closure_iff_infDist_zero
LE.le.lt_iff_ne'
infDist_nonneg
infDist_singleton πŸ“–mathematicalβ€”infDist
Set
Set.instSingletonSet
Dist.dist
PseudoMetricSpace.toDist
β€”infEDist_singleton
dist_edist
infDist_zero_of_mem πŸ“–mathematicalSet
Set.instMembership
infDist
Real
Real.instZero
β€”infEDist_zero_of_mem
infDist_zero_of_mem_closure πŸ“–mathematicalSet
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
infDist
Real
Real.instZero
β€”infDist_closure
infDist_zero_of_mem
infEDist_anti πŸ“–mathematicalSet
Set.instHasSubset
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
infEDist
β€”iInf_le_iInf_of_subset
infEDist_biUnion πŸ“–mathematicalβ€”infEDist
Set.iUnion
Set
Set.instMembership
iInf
ENNReal
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”infEDist_iUnion
infEDist_closure πŸ“–mathematicalβ€”infEDist
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”le_antisymm
infEDist_anti
subset_closure
ENNReal.le_of_forall_pos_le_add
Nat.instAtLeastTwoHAddOfNat
ENNReal.instCanonicallyOrderedAdd
NNReal.instCanonicallyOrderedAdd
ENNReal.lt_add_right
LT.lt.ne
LT.lt.ne'
infEDist_lt_iff
EMetric.mem_closure_iff
infEDist_le_edist_of_mem
PseudoEMetricSpace.edist_triangle
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
le_of_lt
add_assoc
ENNReal.add_halves
infEDist_closure_pos_iff_notMem_closure πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
infEDist
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Set
Set.instMembership
β€”infEDist_closure
infEDist_pos_iff_notMem_closure
infEDist_empty πŸ“–mathematicalβ€”infEDist
Set
Set.instEmptyCollection
Top.top
ENNReal
instTopENNReal
β€”iInf_emptyset
infEDist_eq_top_iff πŸ“–mathematicalβ€”infEDist
PseudoMetricSpace.toPseudoEMetricSpace
Top.top
ENNReal
instTopENNReal
Set
Set.instEmptyCollection
β€”Set.eq_empty_or_nonempty
infEDist_empty
infEDist_iUnion πŸ“–mathematicalβ€”infEDist
Set.iUnion
iInf
ENNReal
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”iInf_iUnion
infEDist_image πŸ“–mathematicalIsometryinfEDist
Set.image
β€”iInf_image
iInf_congr_Prop
Isometry.edist_eq
infEDist_le_edist_add_infEDist πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
infEDist
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
EDist.edist
PseudoEMetricSpace.toEDist
β€”add_comm
infEDist_le_infEDist_add_edist
infEDist_le_edist_of_mem πŸ“–mathematicalSet
Set.instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
infEDist
EDist.edist
PseudoEMetricSpace.toEDist
β€”iInfβ‚‚_le
infEDist_le_hausdorffEDist_of_mem πŸ“–mathematicalSet
Set.instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
infEDist
hausdorffEDist
β€”hausdorffEDist_def
le_trans
le_iSupβ‚‚
le_sup_left
infEDist_le_infEDist_add_edist πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
infEDist
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
EDist.edist
PseudoEMetricSpace.toEDist
β€”iInfβ‚‚_mono
LE.le.trans_eq
PseudoEMetricSpace.edist_triangle
add_comm
ENNReal.iInf_add
infEDist_le_infEDist_add_hausdorffEDist πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
infEDist
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
hausdorffEDist
β€”ENNReal.le_of_forall_pos_le_add
Nat.instAtLeastTwoHAddOfNat
NNReal.instCanonicallyOrderedAdd
ENNReal.lt_add_right
LT.lt.ne
ENNReal.add_lt_top
infEDist_lt_iff
exists_edist_lt_of_hausdorffEDist_lt
infEDist_le_edist_of_mem
PseudoEMetricSpace.edist_triangle
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
LT.lt.le
add_add_add_comm
ENNReal.add_halves
infEDist_lt_iff πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
infEDist
Set
Set.instMembership
EDist.edist
PseudoEMetricSpace.toEDist
β€”β€”
infEDist_ne_top πŸ“–β€”Set.Nonemptyβ€”β€”ne_top_of_le_ne_top
edist_ne_top
infEDist_le_edist_of_mem
infEDist_pos_iff_notMem_closure πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
infEDist
Set
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”mem_closure_iff_infEDist_zero
pos_iff_ne_zero
ENNReal.instCanonicallyOrderedAdd
infEDist_prod πŸ“–mathematicalβ€”infEDist
Prod.pseudoEMetricSpaceMax
SProd.sprod
Set
Set.instSProd
ENNReal
ENNReal.instMax
β€”iInf_congr_Prop
iInf_prod
iInf_and
iInf_sup_eq
sup_iInf_eq
infEDist_singleton πŸ“–mathematicalβ€”infEDist
Set
Set.instSingletonSet
EDist.edist
PseudoEMetricSpace.toEDist
β€”iInf_singleton
infEDist_smul πŸ“–mathematicalβ€”infEDist
Set
Set.smulSet
β€”infEDist_image
IsIsometricSMul.isometry_smul
infEDist_union πŸ“–mathematicalβ€”infEDist
Set
Set.instUnion
ENNReal
ENNReal.instMin
β€”iInf_union
infEDist_vadd πŸ“–mathematicalβ€”infEDist
HVAdd.hVAdd
instHVAdd
Set
Set.vaddSet
β€”infEDist_image
IsIsometricVAdd.isometry_vadd
infEDist_zero_of_mem πŸ“–mathematicalSet
Set.instMembership
infEDist
ENNReal
instZeroENNReal
β€”nonpos_iff_eq_zero
ENNReal.instCanonicallyOrderedAdd
infEDist_le_edist_of_mem
PseudoEMetricSpace.edist_self
infEdist_eq_top_iff πŸ“–mathematicalβ€”infEDist
PseudoMetricSpace.toPseudoEMetricSpace
Top.top
ENNReal
instTopENNReal
Set
Set.instEmptyCollection
β€”infEDist_eq_top_iff
infEdist_ne_top πŸ“–β€”Set.Nonemptyβ€”β€”infEDist_ne_top
isGLB_infDist πŸ“–mathematicalSet.NonemptyIsGLB
Real
Real.instLE
Set.image
Dist.dist
PseudoMetricSpace.toDist
infDist
β€”infDist_eq_iInf
sInf_image'
isGLB_csInf
Set.Nonempty.image
le_infDist πŸ“–mathematicalSet.NonemptyReal
Real.instLE
infDist
Dist.dist
PseudoMetricSpace.toDist
β€”ENNReal.ofReal_le_iff_le_toReal
infEDist_ne_top
edist_ne_top
le_infEDist πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
infEDist
EDist.edist
PseudoEMetricSpace.toEDist
β€”β€”
lipschitz_infDist_pt πŸ“–mathematicalβ€”LipschitzWith
Real
PseudoMetricSpace.toPseudoEMetricSpace
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
Real.metricSpace
NNReal
instOneNNReal
infDist
β€”LipschitzWith.of_le_add
infDist_le_infDist_add_dist
lipschitz_infNndist_pt πŸ“–mathematicalβ€”LipschitzWith
NNReal
PseudoMetricSpace.toPseudoEMetricSpace
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
instMetricSpaceNNReal
instOneNNReal
infNndist
β€”LipschitzWith.of_le_add
infDist_le_infDist_add_dist
mem_closure_iff_infDist_zero πŸ“–mathematicalSet.NonemptySet
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
infDist
Real
Real.instZero
β€”infEDist_ne_top
mem_closure_iff_infEDist_zero πŸ“–mathematicalβ€”Set
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
infEDist
ENNReal
instZeroENNReal
β€”infEDist_closure
infEDist_zero_of_mem
EMetric.mem_closure_iff
infEDist_lt_iff
mem_iff_infEDist_zero_of_closed πŸ“–mathematicalβ€”Set
Set.instMembership
infEDist
ENNReal
instZeroENNReal
β€”mem_closure_iff_infEDist_zero
IsClosed.closure_eq
nonempty_of_hausdorffEDist_ne_top πŸ“–β€”Set.Nonemptyβ€”β€”Set.eq_empty_or_nonempty
hausdorffEDist_empty
notMem_of_dist_lt_infDist πŸ“–mathematicalReal
Real.instLT
Dist.dist
PseudoMetricSpace.toDist
infDist
Set
Set.instMembership
β€”LT.lt.not_ge
infDist_le_dist_of_mem
uniformContinuous_infDist_pt πŸ“–mathematicalβ€”UniformContinuous
Real
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
infDist
β€”LipschitzWith.uniformContinuous
lipschitz_infDist_pt
uniformContinuous_infNndist_pt πŸ“–mathematicalβ€”UniformContinuous
NNReal
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpaceNNReal
infNndist
β€”LipschitzWith.uniformContinuous
lipschitz_infNndist_pt

---

← Back to Index