Documentation Verification Report

Holder

πŸ“ Source: Mathlib/Topology/MetricSpace/Holder.lean

Statistics

MetricCount
DefinitionsHolderOnWith, HolderWith
2
Theoremscomp, comp_holderWith, continuousOn, dist_le, dist_le_of_le, ediam_image_inter_le, ediam_image_inter_le_of_le, ediam_image_le, ediam_image_le_of_le, ediam_image_le_of_subset, ediam_image_le_of_subset_of_le, edist_le, edist_le_of_le, holderOnWith_zero_of_bounded, holderWith, interpolate, interpolate_const, mono, mono_const, nndist_le, nndist_le_of_le, of_le, of_le_of_le, uniformContinuousOn, add, comp, comp_holderOnWith, const, continuous, dist_le, dist_le_of_le, ediam_image_le, edist_le, edist_le_of_le, holderOnWith, holderWith_zero_of_bounded, interpolate, interpolate_const, mono, nndist_le, nndist_le_of_le, of_isEmpty, of_le, of_le_of_le, restrict_iff, smul, smul_iff, uniformContinuous, zero, holderOnWith, holderWith, holderOnWith, convex_setOf_holderOnWith, convex_setOf_holderWith, holderOnWith_empty, holderOnWith_one, holderOnWith_singleton, holderOnWith_univ, holderWith_id, holderWith_one, holderWith_zero_iff
61
Total63

HolderOnWith

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalHolderOnWith
Set.MapsTo
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Real
NNReal.instPowReal
NNReal.toReal
β€”ENNReal.coe_mul
mul_comm
NNReal.coe_mul
ENNReal.rpow_mul
mul_assoc
ENNReal.coe_rpow_of_nonneg
NNReal.coe_nonneg
ENNReal.mul_rpow_of_nonneg
edist_le_of_le
edist_le
comp_holderWith πŸ“–mathematicalHolderOnWith
HolderWith
Set
Set.instMembership
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Real
NNReal.instPowReal
NNReal.toReal
β€”holderOnWith_univ
comp
HolderWith.holderOnWith
continuousOn πŸ“–mathematicalHolderOnWith
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
ContinuousOn
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”UniformContinuousOn.continuousOn
uniformContinuousOn
dist_le πŸ“–mathematicalHolderOnWith
PseudoMetricSpace.toPseudoEMetricSpace
Set
Set.instMembership
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Real.instMul
NNReal.toReal
Real.instPow
β€”dist_le_of_le
le_rfl
dist_le_of_le πŸ“–mathematicalHolderOnWith
PseudoMetricSpace.toPseudoEMetricSpace
Set
Set.instMembership
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Real.instMul
NNReal.toReal
Real.instPow
β€”CanLift.prf
NNReal.canLift
LE.le.trans
dist_nonneg
dist_nndist
nndist_le_of_le
ediam_image_inter_le πŸ“–mathematicalHolderOnWithENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.ediam
Set.image
Set
Set.instInter
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
Real
ENNReal.instPowReal
NNReal.toReal
β€”ediam_image_inter_le_of_le
le_rfl
ediam_image_inter_le_of_le πŸ“–mathematicalHolderOnWith
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.ediam
Set.image
Set
Set.instInter
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
Real
ENNReal.instPowReal
NNReal.toReal
β€”ediam_image_le_of_subset_of_le
Set.inter_subset_right
LE.le.trans
Metric.ediam_mono
Set.inter_subset_left
ediam_image_le πŸ“–mathematicalHolderOnWithENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.ediam
Set.image
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
Real
ENNReal.instPowReal
NNReal.toReal
β€”ediam_image_le_of_le
le_rfl
ediam_image_le_of_le πŸ“–mathematicalHolderOnWith
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.ediam
Set.image
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
Real
ENNReal.instPowReal
NNReal.toReal
β€”Metric.ediam_image_le_iff
edist_le_of_le
LE.le.trans
Metric.edist_le_ediam_of_mem
ediam_image_le_of_subset πŸ“–mathematicalHolderOnWith
Set
Set.instHasSubset
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.ediam
Set.image
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
Real
ENNReal.instPowReal
NNReal.toReal
β€”ediam_image_le
mono
ediam_image_le_of_subset_of_le πŸ“–mathematicalHolderOnWith
Set
Set.instHasSubset
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.ediam
Set.image
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
Real
ENNReal.instPowReal
NNReal.toReal
β€”ediam_image_le_of_le
mono
edist_le πŸ“–mathematicalHolderOnWith
Set
Set.instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
Real
ENNReal.instPowReal
NNReal.toReal
β€”β€”
edist_le_of_le πŸ“–mathematicalHolderOnWith
Set
Set.instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
Real
ENNReal.instPowReal
NNReal.toReal
β€”LE.le.trans
edist_le
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
ENNReal.rpow_le_rpow
NNReal.coe_nonneg
holderOnWith_zero_of_bounded πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
ENNReal.ofNNReal
HolderOnWith
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Real
NNReal.instPowReal
NNReal.toReal
instZeroNNReal
β€”ENNReal.rpow_zero
mul_one
le_imp_le_of_le_of_le
le_refl
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
ENNReal.rpow_le_rpow
NNReal.coe_nonneg
ENNReal.coe_mul
ENNReal.coe_rpow_of_nonneg
holderWith πŸ“–mathematicalHolderOnWithHolderWith
Set.Elem
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
Set.restrict
β€”HolderWith.restrict_iff
interpolate πŸ“–mathematicalHolderOnWith
NNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instOneNNReal
Distrib.toMul
Real
NNReal.instPowReal
NNReal.toReal
β€”ENNReal.rpow_one
le_imp_le_of_le_of_le
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
ENNReal.rpow_le_rpow
NNReal.coe_nonneg
le_refl
mul_le_mul_right
ENNReal.mul_rpow_of_nonneg
ENNReal.coe_rpow_of_nonneg
ENNReal.rpow_add_of_nonneg
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
ENNReal.rpow_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
interpolate_const πŸ“–mathematicalHolderOnWith
NNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instOneNNReal
Distrib.toMulβ€”NNReal.rpow_one
interpolate
mono πŸ“–β€”HolderOnWith
Set
Set.instHasSubset
β€”β€”edist_le
mono_const πŸ“–β€”HolderOnWith
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
β€”β€”le_imp_le_of_le_of_le
le_refl
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
ENNReal.coe_le_coe_of_le
nndist_le πŸ“–mathematicalHolderOnWith
PseudoMetricSpace.toPseudoEMetricSpace
Set
Set.instMembership
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Real
NNReal.instPowReal
NNReal.toReal
β€”nndist_le_of_le
le_rfl
nndist_le_of_le πŸ“–mathematicalHolderOnWith
PseudoMetricSpace.toPseudoEMetricSpace
Set
Set.instMembership
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Real
NNReal.instPowReal
NNReal.toReal
β€”ENNReal.coe_le_coe
edist_nndist
ENNReal.coe_mul
ENNReal.coe_rpow_of_nonneg
NNReal.coe_nonneg
edist_le_of_le
of_le πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
ENNReal.ofNNReal
HolderOnWith
NNReal
instPartialOrderNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Real
NNReal.instPowReal
Real.instSub
NNReal.toReal
β€”eq_zero_or_pos
NNReal.instCanonicallyOrderedAdd
sub_zero
holderOnWith_zero_of_bounded
LT.lt.trans_le
le_of_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.nnreal_coe_pos
NNReal.coe_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
div_le_one_of_leβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instZeroLEOneClass
NNReal.coe_le_coe
NNReal.eq
add_sub_cancel
MulZeroClass.zero_mul
add_zero
mul_div_cancelβ‚€
LT.lt.ne'
NNReal.mul_rpow
NNReal.coe_nonneg
NNReal.rpow_one
mul_sub
mul_one
interpolate
of_le_of_le πŸ“–mathematicalHolderOnWith
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instMaxβ€”mono_const
le_max_left
le_max_right
Convex.segment_subset
convex_setOf_holderOnWith
NNReal.Icc_subset_segment
uniformContinuousOn πŸ“–mathematicalHolderOnWith
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
UniformContinuousOn
PseudoEMetricSpace.toUniformSpace
β€”EMetric.uniformContinuousOn_iff
ENNReal.tendsto_const_mul_rpow_nhds_zero_of_pos
ENNReal.coe_ne_top
Filter.HasBasis.mem_iff
ENNReal.nhds_zero_basis
gt_mem_nhds
ENNReal.instOrderTopology
LE.le.trans_lt
edist_le

HolderWith

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalHolderWith
PseudoMetricSpace.toPseudoEMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”le_imp_le_of_le_of_le
edist_add_add_le
le_refl
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
add_le_add_right
add_mul
Distrib.rightDistribClass
comp πŸ“–mathematicalHolderWithNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Real
NNReal.instPowReal
NNReal.toReal
β€”HolderOnWith.comp_holderWith
holderOnWith
comp_holderOnWith πŸ“–mathematicalHolderWith
HolderOnWith
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Real
NNReal.instPowReal
NNReal.toReal
β€”HolderOnWith.comp
holderOnWith
const πŸ“–mathematicalβ€”HolderWithβ€”PseudoEMetricSpace.edist_self
ENNReal.instCanonicallyOrderedAdd
continuous πŸ“–mathematicalHolderWith
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
Continuous
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”UniformContinuous.continuous
uniformContinuous
dist_le πŸ“–mathematicalHolderWith
PseudoMetricSpace.toPseudoEMetricSpace
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Real.instMul
NNReal.toReal
Real.instPow
β€”dist_le_of_le
le_rfl
dist_le_of_le πŸ“–mathematicalHolderWith
PseudoMetricSpace.toPseudoEMetricSpace
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Real.instMul
NNReal.toReal
Real.instPow
β€”HolderOnWith.dist_le_of_le
holderOnWith
Set.mem_univ
ediam_image_le πŸ“–mathematicalHolderWithENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.ediam
Set.image
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
Real
ENNReal.instPowReal
NNReal.toReal
β€”Metric.ediam_image_le_iff
edist_le_of_le
Metric.edist_le_ediam_of_mem
edist_le πŸ“–mathematicalHolderWithENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
Real
ENNReal.instPowReal
NNReal.toReal
β€”β€”
edist_le_of_le πŸ“–mathematicalHolderWith
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
Real
ENNReal.instPowReal
NNReal.toReal
β€”HolderOnWith.edist_le_of_le
holderOnWith
holderOnWith πŸ“–mathematicalHolderWithHolderOnWithβ€”β€”
holderWith_zero_of_bounded πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
ENNReal.ofNNReal
HolderWith
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Real
NNReal.instPowReal
NNReal.toReal
instZeroNNReal
β€”holderOnWith_univ
HolderOnWith.holderOnWith_zero_of_bounded
interpolate πŸ“–mathematicalHolderWith
NNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instOneNNReal
Distrib.toMul
Real
NNReal.instPowReal
NNReal.toReal
β€”holderOnWith_univ
HolderOnWith.interpolate
interpolate_const πŸ“–mathematicalHolderWith
NNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instOneNNReal
Distrib.toMulβ€”holderOnWith_univ
HolderOnWith.interpolate_const
mono πŸ“–β€”HolderWith
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
β€”β€”LE.le.trans
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
ENNReal.coe_le_coe_of_le
nndist_le πŸ“–mathematicalHolderWith
PseudoMetricSpace.toPseudoEMetricSpace
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Real
NNReal.instPowReal
NNReal.toReal
β€”nndist_le_of_le
le_rfl
nndist_le_of_le πŸ“–mathematicalHolderWith
PseudoMetricSpace.toPseudoEMetricSpace
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Real
NNReal.instPowReal
NNReal.toReal
β€”HolderOnWith.nndist_le_of_le
holderOnWith
Set.mem_univ
of_isEmpty πŸ“–mathematicalβ€”HolderWithβ€”β€”
of_le πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
ENNReal.ofNNReal
HolderWith
NNReal
instPartialOrderNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Real
NNReal.instPowReal
Real.instSub
NNReal.toReal
β€”holderOnWith_univ
HolderOnWith.of_le
of_le_of_le πŸ“–mathematicalHolderWith
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNReal.instMaxβ€”holderOnWith_univ
HolderOnWith.of_le_of_le
restrict_iff πŸ“–mathematicalβ€”HolderWith
Set.Elem
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
Set.restrict
HolderOnWith
β€”β€”
smul πŸ“–mathematicalHolderWith
PseudoMetricSpace.toPseudoEMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
Function.hasSMul
SMulZeroClass.toSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”LE.le.trans
edist_smul_le
ENNReal.coe_mul
ENNReal.smul_def
smul_eq_mul
mul_comm
mul_assoc
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
smul_iff πŸ“–mathematicalβ€”HolderWith
PseudoMetricSpace.toPseudoEMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
SeminormedRing.toNonUnitalSeminormedRing
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”edist_smulβ‚€
mul_comm
mul_assoc
ENNReal.mul_le_mul_iff_right
ENNReal.coe_ne_zero
ENNReal.coe_ne_top
uniformContinuous πŸ“–mathematicalHolderWith
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
UniformContinuous
PseudoEMetricSpace.toUniformSpace
β€”uniformContinuousOn_univ
HolderOnWith.uniformContinuousOn
holderOnWith
zero πŸ“–mathematicalβ€”HolderWith
Pi.instZero
β€”const

LipschitzOnWith

Theorems

NameKindAssumesProvesValidatesDepends On
holderOnWith πŸ“–mathematicalLipschitzOnWithHolderOnWith
NNReal
instOneNNReal
β€”holderOnWith_one

LipschitzWith

Theorems

NameKindAssumesProvesValidatesDepends On
holderWith πŸ“–mathematicalLipschitzWithHolderWith
NNReal
instOneNNReal
β€”holderWith_one

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
holderOnWith πŸ“–mathematicalSet.SubsingletonHolderOnWithβ€”induction_on
holderOnWith_empty
holderOnWith_singleton

(root)

Definitions

NameCategoryTheorems
HolderOnWith πŸ“–MathDef
9 mathmath: holderOnWith_univ, HolderWith.holderOnWith, holderOnWith_empty, HolderWith.restrict_iff, holderOnWith_singleton, holderOnWith_one, LipschitzOnWith.holderOnWith, convex_setOf_holderOnWith, Set.Subsingleton.holderOnWith
HolderWith πŸ“–MathDef
14 mathmath: HolderWith.zero, holderOnWith_univ, MemHolder.holderWith, LipschitzWith.holderWith, HolderOnWith.holderWith, holderWith_zero_iff, memHolder_iff_holderWith, HolderWith.restrict_iff, HolderWith.of_isEmpty, convex_setOf_holderWith, holderWith_id, HolderWith.const, holderWith_one, HolderWith.smul_iff

Theorems

NameKindAssumesProvesValidatesDepends On
convex_setOf_holderOnWith πŸ“–mathematicalβ€”Convex
NNReal
instSemiringNNReal
instPartialOrderNNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toSMul
instCommSemiringNNReal
CommSemiring.toSemiring
Algebra.id
setOf
HolderOnWith
β€”smul_eq_mul
mul_comm
HolderOnWith.interpolate_const
convex_setOf_holderWith πŸ“–mathematicalβ€”Convex
NNReal
instSemiringNNReal
instPartialOrderNNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toSMul
instCommSemiringNNReal
CommSemiring.toSemiring
Algebra.id
setOf
HolderWith
β€”convex_setOf_holderOnWith
holderOnWith_empty πŸ“–mathematicalβ€”HolderOnWith
Set
Set.instEmptyCollection
β€”β€”
holderOnWith_one πŸ“–mathematicalβ€”HolderOnWith
NNReal
instOneNNReal
LipschitzOnWith
β€”ENNReal.rpow_one
holderOnWith_singleton πŸ“–mathematicalβ€”HolderOnWith
Set
Set.instSingletonSet
β€”PseudoEMetricSpace.edist_self
zero_le
ENNReal.instCanonicallyOrderedAdd
holderOnWith_univ πŸ“–mathematicalβ€”HolderOnWith
Set.univ
HolderWith
β€”β€”
holderWith_id πŸ“–mathematicalβ€”HolderWith
NNReal
instOneNNReal
β€”LipschitzWith.holderWith
LipschitzWith.id
holderWith_one πŸ“–mathematicalβ€”HolderWith
NNReal
instOneNNReal
LipschitzWith
β€”holderOnWith_univ
holderOnWith_one
lipschitzOnWith_univ
holderWith_zero_iff πŸ“–mathematicalβ€”HolderWith
PseudoMetricSpace.toPseudoEMetricSpace
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NNReal
instZeroNNReal
β€”MulZeroClass.zero_mul
ENNReal.instCanonicallyOrderedAdd
PseudoEMetricSpace.edist_self

---

← Back to Index