Documentation Verification Report

HolderNorm

πŸ“ Source: Mathlib/Topology/MetricSpace/HolderNorm.lean

Statistics

MetricCount
DefinitionsMemHolder, eHolderNorm, nnHolderNorm
3
Theoremsexists_holderOnWith_of_le, exists_holderOnWith_of_le', exists_holderOnWith_of_le_of_le, eHolderNorm_le, memHolder, nnholderNorm_le, add, coe_nnHolderNorm_eq_eHolderNorm, comp, eHolderNorm_lt_top, eHolderNorm_ne_top, holderWith, memHolder_of_le_of_le, nnHolderNorm_add_le, nnHolderNorm_eq_zero, nnHolderNorm_nsmul, nnHolderNorm_smul, nsmul, of_le, of_le', smul, smul_iff, coe_nnHolderNorm_le_eHolderNorm, eHolderNorm_add_le, eHolderNorm_const, eHolderNorm_eq_top, eHolderNorm_eq_zero, eHolderNorm_lt_top, eHolderNorm_ne_top, eHolderNorm_nsmul, eHolderNorm_of_isEmpty, eHolderNorm_smul, eHolderNorm_zero, memHolder_const, memHolder_const', memHolder_iff_holderWith, memHolder_zero, nnHolderNorm_const, nnHolderNorm_zero
39
Total42

HolderOnWith

Theorems

NameKindAssumesProvesValidatesDepends On
exists_holderOnWith_of_le πŸ“–β€”HolderOnWith
PseudoMetricSpace.toPseudoEMetricSpace
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Bornology.IsBounded
PseudoMetricSpace.toBornology
β€”β€”boundedSpace_val_set_iff
MemHolder.of_le
exists_holderOnWith_of_le' πŸ“–β€”HolderOnWith
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
ENNReal
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
ENNReal.ofNNReal
β€”β€”ne_top_of_le_ne_top
ENNReal.coe_ne_top
Metric.boundedSpace_iff_edist
MemHolder.of_le
exists_holderOnWith_of_le_of_le πŸ“–β€”HolderOnWith
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
β€”β€”of_le_of_le

HolderWith

Theorems

NameKindAssumesProvesValidatesDepends On
eHolderNorm_le πŸ“–mathematicalHolderWithENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
eHolderNorm
ENNReal.ofNNReal
β€”iInfβ‚‚_le
memHolder πŸ“–mathematicalHolderWithMemHolderβ€”β€”
nnholderNorm_le πŸ“–mathematicalHolderWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
nnHolderNorm
β€”ENNReal.coe_le_coe
MemHolder.coe_nnHolderNorm_eq_eHolderNorm
memHolder
eHolderNorm_le

MemHolder

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalMemHolder
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”HolderWith.memHolder
HolderWith.add
holderWith
coe_nnHolderNorm_eq_eHolderNorm πŸ“–mathematicalMemHolder
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
ENNReal.ofNNReal
nnHolderNorm
eHolderNorm
β€”nnHolderNorm.eq_1
ENNReal.coe_toNNReal
ne_of_lt
lt_of_le_of_lt
HolderWith.eHolderNorm_le
holderWith
ENNReal.coe_lt_top
comp πŸ“–mathematicalMemHolder
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”HolderWith.memHolder
HolderWith.comp
holderWith
eHolderNorm_lt_top πŸ“–mathematicalMemHolderENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
eHolderNorm
Top.top
instTopENNReal
β€”eHolderNorm_lt_top
eHolderNorm_ne_top πŸ“–β€”MemHolderβ€”β€”eHolderNorm_ne_top
holderWith πŸ“–mathematicalMemHolder
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
HolderWith
nnHolderNorm
β€”PseudoEMetricSpace.edist_self
ENNReal.instCanonicallyOrderedAdd
nnHolderNorm.eq_1
eHolderNorm.eq_1
ENNReal.coe_toNNReal
LT.lt.ne
eHolderNorm_lt_top
ne_of_lt
ENNReal.rpow_pos
edist_pos
edist_lt_top
ENNReal.div_le_iff
le_iInfβ‚‚
memHolder_of_le_of_le πŸ“–β€”MemHolder
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
β€”β€”HolderOnWith.exists_holderOnWith_of_le_of_le
nnHolderNorm_add_le πŸ“–mathematicalMemHolder
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
nnHolderNorm
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”LE.le.trans
HolderWith.nnholderNorm_le
holderWith
add
HolderWith.add
nnHolderNorm_eq_zero πŸ“–mathematicalMemHolder
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
nnHolderNorm
NNReal
instZeroNNReal
β€”ENNReal.coe_eq_zero
coe_nnHolderNorm_eq_eHolderNorm
eHolderNorm_eq_zero
nnHolderNorm_nsmul πŸ“–mathematicalMemHolder
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
nnHolderNorm
AddMonoid.toNatSMul
Pi.addMonoid
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NNReal
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”Nat.cast_smul_eq_nsmul
nnHolderNorm_smul
NormedSpace.toNormSMulClass
Real.nnnorm_natCast
nsmul_eq_mul
nnHolderNorm_smul πŸ“–mathematicalMemHolder
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
nnHolderNorm
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedRing.toNonUnitalNormedRing
β€”ENNReal.coe_mul
coe_nnHolderNorm_eq_eHolderNorm
smul
NormSMulClass.toIsBoundedSMul
eHolderNorm_smul
nsmul πŸ“–mathematicalMemHolder
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
AddMonoid.toNatSMul
Pi.addMonoid
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”Nat.cast_smul_eq_nsmul
smul
NormedSpace.toIsBoundedSMul
of_le πŸ“–β€”MemHolder
PseudoMetricSpace.toPseudoEMetricSpace
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
β€”β€”Metric.boundedSpace_iff_edist
holderOnWith_univ
HolderOnWith.of_le
of_le' πŸ“–β€”MemHolder
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
ENNReal
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
ENNReal.ofNNReal
β€”β€”ne_top_of_le_ne_top
ENNReal.coe_ne_top
Metric.boundedSpace_iff_edist
of_le
smul πŸ“–mathematicalMemHolder
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
β€”HolderWith.memHolder
HolderWith.smul
holderWith
smul_iff πŸ“–mathematicalβ€”MemHolder
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
β€”HolderWith.smul_iff
inv_mul_cancel_rightβ‚€
smul
NormSMulClass.toIsBoundedSMul

(root)

Definitions

NameCategoryTheorems
MemHolder πŸ“–MathDef
9 mathmath: eHolderNorm_lt_top, memHolder_zero, eHolderNorm_eq_top, memHolder_iff_holderWith, HolderWith.memHolder, eHolderNorm_ne_top, memHolder_const, memHolder_const', MemHolder.smul_iff
eHolderNorm πŸ“–CompOp
13 mathmath: eHolderNorm_eq_zero, MemHolder.coe_nnHolderNorm_eq_eHolderNorm, coe_nnHolderNorm_le_eHolderNorm, eHolderNorm_lt_top, eHolderNorm_eq_top, eHolderNorm_const, eHolderNorm_of_isEmpty, eHolderNorm_nsmul, eHolderNorm_zero, eHolderNorm_add_le, HolderWith.eHolderNorm_le, eHolderNorm_smul, MemHolder.eHolderNorm_lt_top
nnHolderNorm πŸ“–CompOp
11 mathmath: MemHolder.holderWith, MemHolder.coe_nnHolderNorm_eq_eHolderNorm, coe_nnHolderNorm_le_eHolderNorm, nnHolderNorm_zero, nnHolderNorm_const, memHolder_iff_holderWith, MemHolder.nnHolderNorm_nsmul, MemHolder.nnHolderNorm_smul, MemHolder.nnHolderNorm_add_le, HolderWith.nnholderNorm_le, MemHolder.nnHolderNorm_eq_zero

Theorems

NameKindAssumesProvesValidatesDepends On
coe_nnHolderNorm_le_eHolderNorm πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.ofNNReal
nnHolderNorm
eHolderNorm
β€”ENNReal.coe_toNNReal_le_self
eHolderNorm_add_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
eHolderNorm
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”MemHolder.coe_nnHolderNorm_eq_eHolderNorm
MemHolder.add
ENNReal.coe_add
ENNReal.coe_le_coe
MemHolder.nnHolderNorm_add_le
eHolderNorm_eq_top
top_add
add_top
eHolderNorm_const πŸ“–mathematicalβ€”eHolderNorm
ENNReal
instZeroENNReal
β€”eHolderNorm.eq_1
ENNReal.bot_eq_zero
iInfβ‚‚_eq_bot
HolderWith.const
eHolderNorm_eq_top πŸ“–mathematicalβ€”eHolderNorm
Top.top
ENNReal
instTopENNReal
MemHolder
β€”eHolderNorm_ne_top
eHolderNorm_eq_zero πŸ“–mathematicalβ€”eHolderNorm
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
ENNReal
instZeroENNReal
β€”edist_eq_zero
nonpos_iff_eq_zero
ENNReal.instCanonicallyOrderedAdd
le_of_forall_gt
iInfβ‚‚_eq_bot
ENNReal.bot_eq_zero
eHolderNorm.eq_1
ENNReal.div_pos
LT.lt.ne
ENNReal.rpow_lt_top_of_nonneg
NNReal.zero_le_coe
edist_lt_top
lt_of_le_of_lt
ENNReal.mul_lt_of_lt_div
isEmpty_or_nonempty
eHolderNorm_of_isEmpty
eHolderNorm_const
eHolderNorm_lt_top πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
eHolderNorm
Top.top
instTopENNReal
MemHolder
β€”iInf_lt_top
ENNReal.coe_lt_top
eHolderNorm_ne_top πŸ“–mathematicalβ€”MemHolderβ€”eHolderNorm_lt_top
lt_top_iff_ne_top
eHolderNorm_nsmul πŸ“–mathematicalβ€”eHolderNorm
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
AddMonoid.toNatSMul
Pi.addMonoid
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ENNReal
ENNReal.instTopologicalSpace
instENormedAddCommMonoidENNReal
β€”Nat.cast_smul_eq_nsmul
eHolderNorm_smul
NormedSpace.toNormSMulClass
Real.nnnorm_natCast
nsmul_eq_mul
eHolderNorm_of_isEmpty πŸ“–mathematicalβ€”eHolderNorm
ENNReal
instZeroENNReal
β€”eHolderNorm.eq_1
ENNReal.bot_eq_zero
iInfβ‚‚_eq_bot
HolderWith.of_isEmpty
eHolderNorm_smul πŸ“–mathematicalβ€”eHolderNorm
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedRing.toNonUnitalNormedRing
β€”nnnorm_eq_zero
zero_smul
eHolderNorm_zero
nnnorm_zero
MulZeroClass.zero_mul
le_antisymm
LE.le.trans
HolderWith.eHolderNorm_le
HolderWith.smul
NormSMulClass.toIsBoundedSMul
MemHolder.holderWith
ENNReal.coe_mul
MemHolder.coe_nnHolderNorm_eq_eHolderNorm
mul_comm
le_refl
ENNReal.mul_le_of_le_div'
HolderWith.memHolder
ENNReal.coe_div
ENNReal.mul_div_right_comm
ENNReal.le_div_iff_mul_le
ENNReal.coe_ne_zero
ENNReal.coe_ne_top
smul_eq_mul
ENNReal.smul_def
edist_smulβ‚€
Pi.smul_apply
MemHolder.smul
eHolderNorm_eq_top
ENNReal.mul_top
MemHolder.smul_iff
LT.lt.ne
MemHolder.eHolderNorm_lt_top
eHolderNorm_zero πŸ“–mathematicalβ€”eHolderNorm
Pi.instZero
ENNReal
instZeroENNReal
β€”eHolderNorm_const
memHolder_const πŸ“–mathematicalβ€”MemHolderβ€”HolderWith.memHolder
HolderWith.const
memHolder_const' πŸ“–mathematicalβ€”MemHolderβ€”memHolder_const
memHolder_iff_holderWith πŸ“–mathematicalβ€”MemHolder
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
HolderWith
nnHolderNorm
β€”MemHolder.holderWith
HolderWith.memHolder
memHolder_zero πŸ“–mathematicalβ€”MemHolder
Pi.instZero
β€”memHolder_const
nnHolderNorm_const πŸ“–mathematicalβ€”nnHolderNorm
NNReal
instZeroNNReal
β€”le_antisymm
ENNReal.coe_le_coe
le_trans
coe_nnHolderNorm_le_eHolderNorm
eHolderNorm_const
ENNReal.coe_zero
le_refl
zero_le
NNReal.instCanonicallyOrderedAdd
nnHolderNorm_zero πŸ“–mathematicalβ€”nnHolderNorm
Pi.instZero
NNReal
instZeroNNReal
β€”nnHolderNorm_const

---

← Back to Index