Documentation Verification Report

Infsep

πŸ“ Source: Mathlib/Topology/MetricSpace/Infsep.lean

Statistics

MetricCount
Definitionseinfsep, infsep
2
Theoremscoe_infsep, coe_infsep_of_offDiag_empty, coe_infsep_of_offDiag_nonempty, infsep_pos_iff_nontrivial, infsep_zero_iff_subsingleton, einfsep, einfsep_exists_of_nontrivial, einfsep_pos, infsep, infsep_exists_of_nontrivial, infsep_of_nontrivial, infsep_pos_iff_nontrivial, infsep_zero_iff_subsingleton, relatively_discrete, coe_einfsep, einfsep_exists_of_finite, einfsep_lt_top, einfsep_ne_top, infsep_anti, infsep_eq_iInf, infsep_exists_of_finite, infsep_lt_iff, infsep_of_fintype, le_infsep, le_infsep_iff, einfsep, infsep_zero, einfsep_anti, einfsep_empty, einfsep_eq_iInf, einfsep_eq_top_iff, einfsep_iUnion_mem_option, einfsep_insert, einfsep_insert_le, einfsep_le_edist_of_mem, einfsep_le_of_mem_of_edist_le, einfsep_lt_iff, einfsep_lt_top, einfsep_lt_top_iff, einfsep_ne_top, einfsep_ne_top_iff, einfsep_of_fintype, einfsep_pair, einfsep_pair_eq_inf, einfsep_pair_le_left, einfsep_pair_le_right, einfsep_pos, einfsep_pos_of_finite, einfsep_singleton, einfsep_top, einfsep_triple, einfsep_zero, infsep_empty, infsep_eq_iInf, infsep_le_dist_of_mem, infsep_le_of_mem_of_edist_le, infsep_nonneg, infsep_of_fintype, infsep_pair, infsep_pair_eq_toReal, infsep_pair_le_toReal_inf, infsep_pos, infsep_pos_iff_nontrivial_of_finite, infsep_singleton, infsep_triple, infsep_zero, infsep_zero_iff_subsingleton_of_finite, le_edist_of_le_einfsep, le_edist_of_le_infsep, le_einfsep, le_einfsep_iff, le_einfsep_image_iff, le_einfsep_of_forall_dist_le, le_einfsep_pair, le_einfsep_pi_of_le, nontrivial_of_einfsep_lt_top, nontrivial_of_einfsep_ne_top, nontrivial_of_infsep_pos, relatively_discrete_of_finite, subsingleton_of_einfsep_eq_top
80
Total82

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
coe_infsep πŸ“–mathematicalβ€”Set.infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
SetLike.coe
Finset
instSetLike
Real
Nonempty
offDiag
decidableNonempty
inf'
Real.instSemilatticeInf
Dist.dist
PseudoMetricSpace.toDist
Real.instZero
β€”Set.offDiag_nonempty
coe_offDiag
coe_nonempty
Set.Nontrivial.infsep_of_fintype
Set.toFinset_congr
inf'_congr
toFinset_coe
Set.Subsingleton.infsep_zero
Set.not_nontrivial_iff
Function.mt
coe_infsep_of_offDiag_empty πŸ“–mathematicaloffDiag
Finset
instEmptyCollection
Set.infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
SetLike.coe
instSetLike
Real
Real.instZero
β€”coe_infsep
not_nonempty_iff_eq_empty
coe_infsep_of_offDiag_nonempty πŸ“–mathematicalNonempty
offDiag
Set.infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
SetLike.coe
Finset
instSetLike
inf'
Real
Real.instSemilatticeInf
Dist.dist
PseudoMetricSpace.toDist
β€”coe_infsep
infsep_pos_iff_nontrivial πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
Set.infsep
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
SetLike.coe
Finset
instSetLike
Set.Nontrivial
β€”Set.infsep_pos_iff_nontrivial_of_finite
Finite.of_fintype
infsep_zero_iff_subsingleton πŸ“–mathematicalβ€”Set.infsep
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
SetLike.coe
Finset
instSetLike
Real
Real.instZero
Set.Subsingleton
β€”Set.infsep_zero_iff_subsingleton_of_finite
Finite.of_fintype

Set

Definitions

NameCategoryTheorems
einfsep πŸ“–CompOp
37 mathmath: Finite.einfsep, einfsep_of_fintype, einfsep_pair_le_left, le_einfsep_of_forall_dist_le, einfsep_lt_top_iff, einfsep_zero, Finset.coe_einfsep, einfsep_le_edist_of_mem, einfsep_anti, einfsep_eq_top_iff, einfsep_insert, einfsep_lt_iff, infsep_zero, einfsep_insert_le, einfsep_top, le_einfsep, le_einfsep_iff, einfsep_singleton, einfsep_le_of_mem_of_edist_le, einfsep_lt_top, einfsep_eq_iInf, einfsep_pair_eq_inf, einfsep_pos_of_finite, einfsep_pair_le_right, le_einfsep_image_iff, einfsep_triple, einfsep_pair, le_einfsep_pair, infsep_pos, Finite.einfsep_pos, Nontrivial.einfsep_exists_of_finite, Nontrivial.einfsep_lt_top, einfsep_iUnion_mem_option, Subsingleton.einfsep, einfsep_empty, einfsep_pos, Finite.einfsep_exists_of_nontrivial
infsep πŸ“–CompOp
33 mathmath: infsep_zero_iff_subsingleton_of_finite, Finset.infsep_pos_iff_nontrivial, Finite.infsep_of_nontrivial, Finset.coe_infsep_of_offDiag_nonempty, Nontrivial.infsep_of_fintype, infsep_le_of_mem_of_edist_le, Finite.infsep, Nontrivial.infsep_eq_iInf, Finite.infsep_pos_iff_nontrivial, infsep_eq_iInf, infsep_pair, Nontrivial.infsep_lt_iff, infsep_pos_iff_nontrivial_of_finite, infsep_zero, infsep_of_fintype, Finite.infsep_exists_of_nontrivial, infsep_nonneg, Finset.coe_infsep, Nontrivial.infsep_anti, Finite.infsep_zero_iff_subsingleton, Finset.coe_infsep_of_offDiag_empty, Nontrivial.infsep_exists_of_finite, infsep_singleton, infsep_pair_le_toReal_inf, infsep_triple, infsep_empty, infsep_le_dist_of_mem, Finset.infsep_zero_iff_subsingleton, infsep_pair_eq_toReal, Nontrivial.le_infsep, infsep_pos, Subsingleton.infsep_zero, Nontrivial.le_infsep_iff

Theorems

NameKindAssumesProvesValidatesDepends On
einfsep_anti πŸ“–mathematicalSet
instHasSubset
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
einfsep
β€”le_einfsep
einfsep_le_edist_of_mem
einfsep_empty πŸ“–mathematicalβ€”einfsep
Set
instEmptyCollection
Top.top
ENNReal
instTopENNReal
β€”Subsingleton.einfsep
subsingleton_empty
einfsep_eq_iInf πŸ“–mathematicalβ€”einfsep
iInf
ENNReal
Elem
offDiag
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
EDist.edist
Set
instMembership
β€”eq_of_forall_le_iff
einfsep_eq_top_iff πŸ“–mathematicalβ€”einfsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
Top.top
ENNReal
instTopENNReal
Subsingleton
β€”subsingleton_of_einfsep_eq_top
Subsingleton.einfsep
einfsep_iUnion_mem_option πŸ“–mathematicalβ€”einfsep
iUnion
iInf
ENNReal
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”iUnion_congr_Prop
iUnion_of_empty
instIsEmptyFalse
iUnion_empty
einfsep_empty
iInf_congr_Prop
iInf_neg
iInf_top
iUnion_iUnion_eq_right
iInf_iInf_eq_right
einfsep_insert πŸ“–mathematicalβ€”einfsep
PseudoEMetricSpace.toEDist
Set
instInsert
ENNReal
ENNReal.instMin
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
instMembership
EDist.edist
β€”le_antisymm
le_min
einfsep_insert_le
einfsep_anti
subset_insert
iInf_le_of_le
iInfβ‚‚_le
PseudoEMetricSpace.edist_comm
einfsep_le_edist_of_mem
einfsep_insert_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
einfsep
Set
instInsert
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
instMembership
EDist.edist
β€”einfsep_le_edist_of_mem
mem_insert
mem_insert_of_mem
einfsep_le_edist_of_mem πŸ“–mathematicalSet
instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
einfsep
EDist.edist
β€”le_edist_of_le_einfsep
le_rfl
einfsep_le_of_mem_of_edist_le πŸ“–mathematicalSet
instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
einfsepβ€”le_trans
einfsep_le_edist_of_mem
einfsep_lt_iff πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
einfsep
Set
instMembership
EDist.edist
β€”β€”
einfsep_lt_top πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
einfsep
Top.top
instTopENNReal
Set
instMembership
EDist.edist
β€”β€”
einfsep_lt_top_iff πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
einfsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
Top.top
instTopENNReal
Nontrivial
β€”nontrivial_of_einfsep_lt_top
Nontrivial.einfsep_lt_top
einfsep_ne_top πŸ“–mathematicalβ€”Set
instMembership
β€”β€”
einfsep_ne_top_iff πŸ“–mathematicalβ€”Nontrivialβ€”nontrivial_of_einfsep_ne_top
Nontrivial.einfsep_ne_top
einfsep_of_fintype πŸ“–mathematicalβ€”einfsep
Finset.inf
ENNReal
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
ENNReal.instOrderTop
toFinset
offDiag
fintypeOffDiag
EDist.edist
β€”eq_of_forall_le_iff
einfsep_pair πŸ“–mathematicalβ€”einfsep
PseudoEMetricSpace.toEDist
Set
instInsert
instSingletonSet
EDist.edist
β€”min_self
PseudoEMetricSpace.edist_comm
einfsep_pair_eq_inf
einfsep_pair_eq_inf πŸ“–mathematicalβ€”einfsep
Set
instInsert
instSingletonSet
ENNReal
ENNReal.instMin
EDist.edist
β€”le_antisymm
le_inf
einfsep_pair_le_left
einfsep_pair_le_right
le_einfsep_pair
einfsep_pair_le_left πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
einfsep
Set
instInsert
instSingletonSet
EDist.edist
β€”einfsep_le_edist_of_mem
mem_insert
mem_insert_of_mem
mem_singleton
einfsep_pair_le_right πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
einfsep
Set
instInsert
instSingletonSet
EDist.edist
β€”pair_comm
einfsep_pair_le_left
einfsep_pos πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
einfsep
Preorder.toLE
EDist.edist
β€”pos_iff_ne_zero
ENNReal.instCanonicallyOrderedAdd
einfsep_zero
einfsep_pos_of_finite πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
einfsep
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
β€”nonempty_fintype
Nontrivial.einfsep_exists_of_finite
edist_pos
WithTop.top_pos
Subsingleton.einfsep
not_nontrivial_iff
einfsep_singleton πŸ“–mathematicalβ€”einfsep
Set
instSingletonSet
Top.top
ENNReal
instTopENNReal
β€”Subsingleton.einfsep
subsingleton_singleton
einfsep_top πŸ“–mathematicalβ€”einfsep
Top.top
ENNReal
instTopENNReal
EDist.edist
β€”β€”
einfsep_triple πŸ“–mathematicalβ€”einfsep
PseudoEMetricSpace.toEDist
Set
instInsert
instSingletonSet
ENNReal
ENNReal.instMin
EDist.edist
β€”einfsep_insert
iInf_insert
iInf_singleton
einfsep_singleton
inf_top_eq
ciInf_pos
einfsep_zero πŸ“–mathematicalβ€”einfsep
ENNReal
instZeroENNReal
Set
instMembership
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
β€”ENNReal.instCanonicallyOrderedAdd
infsep_empty πŸ“–mathematicalβ€”infsep
Set
instEmptyCollection
Real
Real.instZero
β€”Subsingleton.infsep_zero
subsingleton_empty
infsep_eq_iInf πŸ“–mathematicalβ€”infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
Real
Nontrivial
iInf
Elem
offDiag
Real.instInfSet
Dist.dist
PseudoMetricSpace.toDist
Set
instMembership
Real.instZero
β€”dist_nonneg
eq_of_forall_le_iff
Nontrivial.le_infsep_iff
le_ciInf_set_iff
offDiag_nonempty
Subsingleton.infsep_zero
not_nontrivial_iff
infsep_le_dist_of_mem πŸ“–mathematicalSet
instMembership
Real
Real.instLE
infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
Dist.dist
PseudoMetricSpace.toDist
β€”le_edist_of_le_infsep
le_rfl
infsep_le_of_mem_of_edist_le πŸ“–mathematicalSet
instMembership
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
β€”le_trans
infsep_le_dist_of_mem
infsep_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
infsep
β€”ENNReal.toReal_nonneg
infsep_of_fintype πŸ“–mathematicalβ€”infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
Real
Nontrivial
Finset.inf'
Real.instSemilatticeInf
toFinset
offDiag
fintypeOffDiag
Dist.dist
PseudoMetricSpace.toDist
Real.instZero
β€”eq_of_forall_le_iff
Nontrivial.le_infsep_iff
Subsingleton.infsep_zero
not_nontrivial_iff
infsep_pair πŸ“–mathematicalβ€”infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
Set
instInsert
instSingletonSet
Dist.dist
PseudoMetricSpace.toDist
β€”infsep_pair_eq_toReal
edist_dist
ENNReal.toReal_ofReal
dist_nonneg
infsep_pair_eq_toReal πŸ“–mathematicalβ€”infsep
PseudoEMetricSpace.toEDist
Set
instInsert
instSingletonSet
ENNReal.toReal
EDist.edist
β€”pair_eq_singleton
infsep_singleton
PseudoEMetricSpace.edist_self
infsep.eq_1
einfsep_pair
infsep_pair_le_toReal_inf πŸ“–mathematicalβ€”Real
Real.instLE
infsep
Set
instInsert
instSingletonSet
ENNReal.toReal
ENNReal
ENNReal.instMin
EDist.edist
β€”einfsep_pair_eq_inf
infsep_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
infsep
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
einfsep
Top.top
instTopENNReal
β€”β€”
infsep_pos_iff_nontrivial_of_finite πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
infsep
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
Nontrivial
β€”infsep_pos
einfsep_lt_top_iff
einfsep_pos_of_finite
infsep_singleton πŸ“–mathematicalβ€”infsep
Set
instSingletonSet
Real
Real.instZero
β€”Subsingleton.infsep_zero
subsingleton_singleton
infsep_triple πŸ“–mathematicalβ€”infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
Set
instInsert
instSingletonSet
Real
Real.instMin
Dist.dist
PseudoMetricSpace.toDist
β€”einfsep_triple
ENNReal.toReal_inf
edist_ne_top
dist_edist
infsep_zero πŸ“–mathematicalβ€”infsep
Real
Real.instZero
einfsep
ENNReal
instZeroENNReal
Top.top
instTopENNReal
β€”infsep.eq_1
ENNReal.toReal_eq_zero_iff
infsep_zero_iff_subsingleton_of_finite πŸ“–mathematicalβ€”infsep
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
Real
Real.instZero
Subsingleton
β€”infsep_zero
einfsep_eq_top_iff
LT.lt.ne'
einfsep_pos_of_finite
le_edist_of_le_einfsep πŸ“–mathematicalSet
instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
einfsep
EDist.edistβ€”le_einfsep_iff
le_edist_of_le_infsep πŸ“–mathematicalSet
instMembership
Real
Real.instLE
infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
Dist.dist
PseudoMetricSpace.toDist
β€”Nontrivial.le_infsep_iff
le_trans
Subsingleton.infsep_zero
not_nontrivial_iff
dist_nonneg
le_einfsep πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
einfsepβ€”le_einfsep_iff
le_einfsep_iff πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
einfsep
EDist.edist
β€”β€”
le_einfsep_image_iff πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
einfsep
image
EDist.edist
β€”β€”
le_einfsep_of_forall_dist_le πŸ“–mathematicalReal
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.ofReal
einfsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
β€”le_einfsep
ENNReal.ofReal_le_ofReal
edist_dist
le_einfsep_pair πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.instMin
EDist.edist
einfsep
Set
instInsert
instSingletonSet
β€”β€”
le_einfsep_pi_of_le πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
einfsep
PseudoEMetricSpace.toEDist
instEDistForall
pi
univ
β€”le_einfsep
Function.ne_iff
le_trans
le_einfsep_iff
mem_univ_pi
edist_le_pi_edist
nontrivial_of_einfsep_lt_top πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
einfsep
Top.top
instTopENNReal
Nontrivialβ€”einfsep_lt_top
nontrivial_of_einfsep_ne_top πŸ“–mathematicalβ€”Nontrivialβ€”nontrivial_of_einfsep_lt_top
lt_top_iff_ne_top
nontrivial_of_infsep_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
infsep
Nontrivialβ€”Mathlib.Tactic.Contrapose.contrapose₁
lt_irrefl
Subsingleton.infsep_zero
not_nontrivial_iff
relatively_discrete_of_finite πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Preorder.toLE
EDist.edist
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
β€”einfsep_pos
einfsep_pos_of_finite
subsingleton_of_einfsep_eq_top πŸ“–mathematicaleinfsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
Top.top
ENNReal
instTopENNReal
Subsingletonβ€”of_not_not
edist_ne_top
einfsep_top

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
einfsep πŸ“–mathematicalβ€”Set.einfsep
Finset.inf
ENNReal
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
ENNReal.instOrderTop
toFinset
Set.offDiag
offDiag
EDist.edist
β€”eq_of_forall_le_iff
offDiag
einfsep_exists_of_nontrivial πŸ“–mathematicalSet.NontrivialSet
Set.instMembership
Set.einfsep
EDist.edist
β€”Set.Nontrivial.einfsep_exists_of_finite
Finite.of_fintype
einfsep_pos πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set.einfsep
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
β€”Set.einfsep_pos_of_finite
Finite.of_fintype
infsep πŸ“–mathematicalβ€”Set.infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
Real
Set.Nontrivial
Finset.inf'
Real.instSemilatticeInf
toFinset
Set.offDiag
offDiag
Dist.dist
PseudoMetricSpace.toDist
Real.instZero
β€”offDiag
eq_of_forall_le_iff
Set.Nontrivial.le_infsep_iff
Set.Subsingleton.infsep_zero
Set.not_nontrivial_iff
infsep_exists_of_nontrivial πŸ“–mathematicalSet.NontrivialSet
Set.instMembership
Set.infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
Dist.dist
PseudoMetricSpace.toDist
β€”Set.Nontrivial.infsep_exists_of_finite
Finite.of_fintype
infsep_of_nontrivial πŸ“–mathematicalSet.NontrivialSet.infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
Finset.inf'
Real
Real.instSemilatticeInf
toFinset
Set.offDiag
offDiag
Dist.dist
PseudoMetricSpace.toDist
β€”offDiag
infsep
infsep_pos_iff_nontrivial πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
Set.infsep
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
Set.Nontrivial
β€”Set.infsep_pos_iff_nontrivial_of_finite
Finite.of_fintype
infsep_zero_iff_subsingleton πŸ“–mathematicalβ€”Set.infsep
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
Real
Real.instZero
Set.Subsingleton
β€”Set.infsep_zero_iff_subsingleton_of_finite
Finite.of_fintype
relatively_discrete πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Preorder.toLE
EDist.edist
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
β€”Set.relatively_discrete_of_finite
Finite.of_fintype

Set.Finset

Theorems

NameKindAssumesProvesValidatesDepends On
coe_einfsep πŸ“–mathematicalβ€”Set.einfsep
SetLike.coe
Finset
Finset.instSetLike
Finset.inf
ENNReal
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
ENNReal.instOrderTop
Finset.offDiag
EDist.edist
β€”Set.einfsep_of_fintype
Set.toFinset_congr
Finset.toFinset_coe

Set.Nontrivial

Theorems

NameKindAssumesProvesValidatesDepends On
einfsep_exists_of_finite πŸ“–mathematicalSet.NontrivialSet
Set.instMembership
Set.einfsep
EDist.edist
β€”nonempty_fintype
Set.einfsep_of_fintype
Finset.exists_mem_eq_inf
einfsep_lt_top πŸ“–mathematicalSet.NontrivialENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
Set.einfsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
Top.top
instTopENNReal
β€”lt_top_iff_ne_top
einfsep_ne_top
einfsep_ne_top πŸ“–β€”Set.Nontrivialβ€”β€”Mathlib.Tactic.Contrapose.contrapose₃
Set.subsingleton_of_einfsep_eq_top
infsep_anti πŸ“–mathematicalSet.Nontrivial
Set
Set.instHasSubset
Real
Real.instLE
Set.infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
β€”ENNReal.toReal_mono
einfsep_ne_top
Set.einfsep_anti
infsep_eq_iInf πŸ“–mathematicalSet.NontrivialSet.infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
iInf
Real
Set.Elem
Set.offDiag
Real.instInfSet
Dist.dist
PseudoMetricSpace.toDist
Set
Set.instMembership
β€”Set.infsep_eq_iInf
infsep_exists_of_finite πŸ“–mathematicalSet.NontrivialSet
Set.instMembership
Set.infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
Dist.dist
PseudoMetricSpace.toDist
β€”nonempty_fintype
infsep_of_fintype
Finset.exists_mem_eq_inf'
infsep_lt_iff πŸ“–mathematicalSet.NontrivialReal
Real.instLT
Set.infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
Set
Set.instMembership
Dist.dist
PseudoMetricSpace.toDist
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
Mathlib.Tactic.Push.not_and_eq
le_infsep_iff
infsep_of_fintype πŸ“–mathematicalSet.NontrivialSet.infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
Finset.inf'
Real
Real.instSemilatticeInf
Set.toFinset
Set.offDiag
Set.fintypeOffDiag
Dist.dist
PseudoMetricSpace.toDist
β€”Set.infsep_of_fintype
le_infsep πŸ“–mathematicalSet.Nontrivial
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Set.infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
β€”le_infsep_iff
le_infsep_iff πŸ“–mathematicalSet.NontrivialReal
Real.instLE
Set.infsep
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
Dist.dist
PseudoMetricSpace.toDist
β€”ENNReal.ofReal_le_iff_le_toReal
einfsep_ne_top
edist_dist
ENNReal.ofReal_le_ofReal_iff
dist_nonneg

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
einfsep πŸ“–mathematicalSet.SubsingletonSet.einfsep
Top.top
ENNReal
instTopENNReal
β€”Set.einfsep_top
infsep_zero πŸ“–mathematicalSet.SubsingletonSet.infsep
Real
Real.instZero
β€”Set.infsep_zero
einfsep

---

← Back to Index