Documentation Verification Report

Isometry

πŸ“ Source: Mathlib/Topology/MetricSpace/Isometry.lean

Statistics

MetricCount
DefinitionsappendIsometry, appendIsometryOfEq, Isometry, isometryEquivOnRange, IsometryClass, instCoeOutIsometryEquiv, toIsometryEquiv, apply, symm_apply, funUnique, instEquivLike, instGroup, mk', piCongrLeft, piCongrLeft', piFinTwo, refl, sumArrowIsometryEquivProdArrow, toEquiv, toHomeomorph, trans, Isometry, Β«term_≃ᡒ_Β»
23
Theoremsisometry_induced, appendIsometryOfEq_apply, appendIsometryOfEq_symm_apply, appendIsometry_apply, appendIsometry_symm_apply, appendIsometry_toHomeomorph, edist_append_eq_max_edist, to_isometry, antilipschitz, comp, comp_continuousOn_iff, comp_continuous_iff, continuous, diam_image, diam_range, dist_eq, ediam_image, ediam_range, edist_eq, injective, inl, inr, isClosedEmbedding, isEmbedding, isUniformEmbedding, isUniformInducing, isometryEquivOnRange_apply, isometryEquivOnRange_toEquiv, lipschitz, lipschitzWith_iff, mapsTo_ball, mapsTo_closedBall, mapsTo_closedEBall, mapsTo_eball, mapsTo_emetric_ball, mapsTo_emetric_closedBall, mapsTo_sphere, nndist_eq, of_dist_eq, of_nndist_eq, piMap, preimage_ball, preimage_closedBall, preimage_closedEBall, preimage_eball, preimage_emetric_ball, preimage_emetric_closedBall, preimage_setOf_dist, preimage_sphere, prodMap, right_inv, single, tendsto_nhds_iff, uniformContinuous, antilipschitz, coe_coe, continuous, diam_image, diam_range, dist_eq, ediam_image, ediam_range, edist_eq, isometry, lipschitz, nndist_eq, toContinuousMapClass, toHomeomorphClass, toIsometryEquiv_injective, apply_inv_self, apply_symm_apply, bijective, coe_eq_toEquiv, coe_mk, coe_mul, coe_one, coe_symm_toEquiv, coe_toEquiv, coe_toHomeomorph, coe_toHomeomorph_symm, comp_continuousOn_iff, comp_continuous_iff, comp_continuous_iff', completeSpace, completeSpace_iff, continuous, diam_image, diam_preimage, diam_univ, dist_eq, ediam_image, ediam_preimage, ediam_univ, edist_eq, eq_symm_apply, ext, ext_iff, funUnique_apply, funUnique_symm_apply, image_ball, image_closedBall, image_closedEBall, image_eball, image_emetric_ball, image_emetric_closedBall, image_sphere, image_symm, injective, instIsometryClass, inv_apply_self, isometry, isometry_toFun, mul_apply, nndist_eq, piCongrLeft'_apply, piCongrLeft'_symm_apply, piCongrLeft_apply, piCongrLeft_symm_apply, piFinTwo_apply, piFinTwo_symm_apply, preimage_ball, preimage_closedBall, preimage_closedEBall, preimage_eball, preimage_emetric_ball, preimage_emetric_closedBall, preimage_sphere, preimage_symm, range_eq_univ, self_comp_symm, sumArrowIsometryEquivProdArrow_apply, sumArrowIsometryEquivProdArrow_symm_apply, sumArrowIsometryEquivProdArrow_toHomeomorph, surjective, symm_apply_apply, symm_apply_eq, symm_bijective, symm_comp_self, symm_symm, symm_trans_apply, toEquiv_inj, toEquiv_injective, toEquiv_toHomeomorph, trans_apply, isometry_induced, isometry_induced, isometry_induced, to_isometry, isometry_id, isometry_iff_dist_eq, isometry_iff_nndist_eq, isometry_subsingleton, isometry_subtype_coe
153
Total176

EMetricSpace

Theorems

NameKindAssumesProvesValidatesDepends On
isometry_induced πŸ“–mathematicalβ€”Isometry
toPseudoEMetricSpace
induced
β€”β€”

Fin

Definitions

NameCategoryTheorems
appendIsometry πŸ“–CompOp
3 mathmath: appendIsometry_symm_apply, appendIsometry_toHomeomorph, appendIsometry_apply
appendIsometryOfEq πŸ“–CompOp
2 mathmath: appendIsometryOfEq_apply, appendIsometryOfEq_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
appendIsometryOfEq_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
Prod.pseudoEMetricSpaceMax
pseudoEMetricSpacePi
fintype
EquivLike.toFunLike
IsometryEquiv.instEquivLike
appendIsometryOfEq
append
β€”β€”
appendIsometryOfEq_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
pseudoEMetricSpacePi
fintype
Prod.pseudoEMetricSpaceMax
EquivLike.toFunLike
IsometryEquiv.instEquivLike
IsometryEquiv.symm
appendIsometryOfEq
β€”β€”
appendIsometry_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
Prod.pseudoEMetricSpaceMax
pseudoEMetricSpacePi
fintype
EquivLike.toFunLike
IsometryEquiv.instEquivLike
appendIsometry
append
β€”β€”
appendIsometry_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
pseudoEMetricSpacePi
fintype
Prod.pseudoEMetricSpaceMax
EquivLike.toFunLike
IsometryEquiv.instEquivLike
IsometryEquiv.symm
appendIsometry
β€”β€”
appendIsometry_toHomeomorph πŸ“–mathematicalβ€”IsometryEquiv.toHomeomorph
Prod.pseudoEMetricSpaceMax
pseudoEMetricSpacePi
fintype
appendIsometry
appendHomeomorph
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”β€”
edist_append_eq_max_edist πŸ“–mathematicalβ€”EDist.edist
instEDistForall
fintype
PseudoEMetricSpace.toEDist
append
ENNReal
ENNReal.instMax
β€”Finset.sup_univ_eq_iSup
Equiv.iSup_comp
iSup_sum
append_left
append_right

IsUniformEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
to_isometry πŸ“–mathematicalIsUniformEmbedding
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Isometry
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
comapMetricSpace
β€”Isometry.of_dist_eq

Isometry

Definitions

NameCategoryTheorems
isometryEquivOnRange πŸ“–CompOp
2 mathmath: isometryEquivOnRange_toEquiv, isometryEquivOnRange_apply

Theorems

NameKindAssumesProvesValidatesDepends On
antilipschitz πŸ“–mathematicalIsometryAntilipschitzWith
NNReal
instOneNNReal
β€”one_mul
comp πŸ“–β€”Isometryβ€”β€”β€”
comp_continuousOn_iff πŸ“–mathematicalIsometryContinuousOn
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”Topology.IsInducing.continuousOn_iff
IsUniformInducing.isInducing
isUniformInducing
comp_continuous_iff πŸ“–mathematicalIsometryContinuous
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”Topology.IsInducing.continuous_iff
IsUniformInducing.isInducing
isUniformInducing
continuous πŸ“–mathematicalIsometryContinuous
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”LipschitzWith.continuous
lipschitz
diam_image πŸ“–mathematicalIsometry
PseudoMetricSpace.toPseudoEMetricSpace
Metric.diam
Set.image
β€”Metric.diam.eq_1
ediam_image
diam_range πŸ“–mathematicalIsometry
PseudoMetricSpace.toPseudoEMetricSpace
Metric.diam
Set.range
Set.univ
β€”Set.image_univ
diam_image
dist_eq πŸ“–mathematicalIsometry
PseudoMetricSpace.toPseudoEMetricSpace
Dist.dist
PseudoMetricSpace.toDist
β€”isometry_iff_dist_eq
ediam_image πŸ“–mathematicalIsometryMetric.ediam
Set.image
β€”eq_of_forall_ge_iff
edist_eq
ediam_range πŸ“–mathematicalIsometryMetric.ediam
Set.range
Set.univ
β€”Set.image_univ
ediam_image
edist_eq πŸ“–mathematicalIsometryEDist.edist
PseudoEMetricSpace.toEDist
β€”β€”
injective πŸ“–β€”Isometry
EMetricSpace.toPseudoEMetricSpace
β€”β€”AntilipschitzWith.injective
antilipschitz
inl πŸ“–mathematicalβ€”Isometry
Prod.pseudoEMetricSpaceMax
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Prod.instAddZeroClass
AddMonoidHom.instFunLike
AddMonoidHom.inl
β€”Prod.edist_eq
PseudoEMetricSpace.edist_self
sup_of_le_left
ENNReal.instCanonicallyOrderedAdd
inr πŸ“–mathematicalβ€”Isometry
Prod.pseudoEMetricSpaceMax
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Prod.instAddZeroClass
AddMonoidHom.instFunLike
AddMonoidHom.inr
β€”Prod.edist_eq
PseudoEMetricSpace.edist_self
sup_of_le_right
ENNReal.instCanonicallyOrderedAdd
isClosedEmbedding πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
Topology.IsClosedEmbedding
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”AntilipschitzWith.isClosedEmbedding
antilipschitz
LipschitzWith.uniformContinuous
lipschitz
isEmbedding πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
Topology.IsEmbedding
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”IsUniformEmbedding.isEmbedding
isUniformEmbedding
isUniformEmbedding πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
IsUniformEmbedding
PseudoEMetricSpace.toUniformSpace
β€”AntilipschitzWith.isUniformEmbedding
antilipschitz
LipschitzWith.uniformContinuous
lipschitz
isUniformInducing πŸ“–mathematicalIsometryIsUniformInducing
PseudoEMetricSpace.toUniformSpace
β€”AntilipschitzWith.isUniformInducing
antilipschitz
uniformContinuous
isometryEquivOnRange_apply πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
DFunLike.coe
IsometryEquiv
Set.Elem
Set.range
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
EquivLike.toFunLike
IsometryEquiv.instEquivLike
isometryEquivOnRange
β€”β€”
isometryEquivOnRange_toEquiv πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
IsometryEquiv.toEquiv
Set.Elem
Set.range
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
isometryEquivOnRange
Equiv.ofInjective
injective
β€”β€”
lipschitz πŸ“–mathematicalIsometryLipschitzWith
NNReal
instOneNNReal
β€”LipschitzWith.of_edist_le
Eq.le
lipschitzWith_iff πŸ“–mathematicalIsometryLipschitzWithβ€”edist_eq
mapsTo_ball πŸ“–mathematicalIsometry
PseudoMetricSpace.toPseudoEMetricSpace
Set.MapsTo
Metric.ball
β€”Eq.ge
preimage_ball
mapsTo_closedBall πŸ“–mathematicalIsometry
PseudoMetricSpace.toPseudoEMetricSpace
Set.MapsTo
Metric.closedBall
β€”Eq.ge
preimage_closedBall
mapsTo_closedEBall πŸ“–mathematicalIsometrySet.MapsTo
Metric.closedEBall
β€”Eq.ge
preimage_closedEBall
mapsTo_eball πŸ“–mathematicalIsometrySet.MapsTo
Metric.eball
β€”Eq.ge
preimage_eball
mapsTo_emetric_ball πŸ“–mathematicalIsometrySet.MapsTo
Metric.eball
β€”mapsTo_eball
mapsTo_emetric_closedBall πŸ“–mathematicalIsometrySet.MapsTo
Metric.closedEBall
β€”mapsTo_closedEBall
mapsTo_sphere πŸ“–mathematicalIsometry
PseudoMetricSpace.toPseudoEMetricSpace
Set.MapsTo
Metric.sphere
β€”Eq.ge
preimage_sphere
nndist_eq πŸ“–mathematicalIsometry
PseudoMetricSpace.toPseudoEMetricSpace
NNDist.nndist
PseudoMetricSpace.toNNDist
β€”isometry_iff_nndist_eq
of_dist_eq πŸ“–mathematicalDist.dist
PseudoMetricSpace.toDist
Isometry
PseudoMetricSpace.toPseudoEMetricSpace
β€”isometry_iff_dist_eq
of_nndist_eq πŸ“–mathematicalNNDist.nndist
PseudoMetricSpace.toNNDist
Isometry
PseudoMetricSpace.toPseudoEMetricSpace
β€”isometry_iff_nndist_eq
piMap πŸ“–mathematicalIsometrypseudoEMetricSpacePi
Pi.map
β€”edist_eq
preimage_ball πŸ“–mathematicalIsometry
PseudoMetricSpace.toPseudoEMetricSpace
Set.preimage
Metric.ball
β€”preimage_setOf_dist
preimage_closedBall πŸ“–mathematicalIsometry
PseudoMetricSpace.toPseudoEMetricSpace
Set.preimage
Metric.closedBall
β€”preimage_setOf_dist
preimage_closedEBall πŸ“–mathematicalIsometrySet.preimage
Metric.closedEBall
β€”Set.ext
edist_eq
preimage_eball πŸ“–mathematicalIsometrySet.preimage
Metric.eball
β€”Set.ext
edist_eq
preimage_emetric_ball πŸ“–mathematicalIsometrySet.preimage
Metric.eball
β€”preimage_eball
preimage_emetric_closedBall πŸ“–mathematicalIsometrySet.preimage
Metric.closedEBall
β€”preimage_closedEBall
preimage_setOf_dist πŸ“–mathematicalIsometry
PseudoMetricSpace.toPseudoEMetricSpace
Set.preimage
setOf
Dist.dist
PseudoMetricSpace.toDist
β€”dist_eq
preimage_sphere πŸ“–mathematicalIsometry
PseudoMetricSpace.toPseudoEMetricSpace
Set.preimage
Metric.sphere
β€”preimage_setOf_dist
prodMap πŸ“–mathematicalIsometryProd.pseudoEMetricSpaceMaxβ€”edist_eq
right_inv πŸ“–β€”Isometryβ€”β€”β€”
single πŸ“–mathematicalβ€”Isometry
pseudoEMetricSpacePi
Pi.single
β€”edist_pi_def
le_antisymm
Finset.sup_le
eq_or_ne
Pi.single_eq_same
Pi.single_eq_of_ne'
PseudoEMetricSpace.edist_self
ENNReal.instCanonicallyOrderedAdd
Finset.le_sup_of_le
Finset.mem_univ
tendsto_nhds_iff πŸ“–mathematicalIsometryFilter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”Topology.IsInducing.tendsto_nhds_iff
IsUniformInducing.isInducing
isUniformInducing
uniformContinuous πŸ“–mathematicalIsometryUniformContinuous
PseudoEMetricSpace.toUniformSpace
β€”LipschitzWith.uniformContinuous
lipschitz

IsometryClass

Definitions

NameCategoryTheorems
instCoeOutIsometryEquiv πŸ“–CompOpβ€”
toIsometryEquiv πŸ“–CompOp
2 mathmath: toIsometryEquiv_injective, coe_coe

Theorems

NameKindAssumesProvesValidatesDepends On
antilipschitz πŸ“–mathematicalβ€”AntilipschitzWith
NNReal
instOneNNReal
DFunLike.coe
β€”Isometry.antilipschitz
isometry
coe_coe πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
IsometryEquiv.instEquivLike
toIsometryEquiv
β€”β€”
continuous πŸ“–mathematicalβ€”Continuous
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
DFunLike.coe
β€”Isometry.continuous
isometry
diam_image πŸ“–mathematicalβ€”Metric.diam
Set.image
DFunLike.coe
β€”Isometry.diam_image
isometry
diam_range πŸ“–mathematicalβ€”Metric.diam
Set.range
DFunLike.coe
Set.univ
β€”Isometry.diam_range
isometry
dist_eq πŸ“–mathematicalβ€”Dist.dist
PseudoMetricSpace.toDist
DFunLike.coe
β€”Isometry.dist_eq
isometry
ediam_image πŸ“–mathematicalβ€”Metric.ediam
Set.image
DFunLike.coe
β€”Isometry.ediam_image
isometry
ediam_range πŸ“–mathematicalβ€”Metric.ediam
Set.range
DFunLike.coe
Set.univ
β€”Isometry.ediam_range
isometry
edist_eq πŸ“–mathematicalβ€”EDist.edist
PseudoEMetricSpace.toEDist
DFunLike.coe
β€”Isometry.edist_eq
isometry
isometry πŸ“–mathematicalβ€”Isometry
DFunLike.coe
β€”β€”
lipschitz πŸ“–mathematicalβ€”LipschitzWith
NNReal
instOneNNReal
DFunLike.coe
β€”Isometry.lipschitz
isometry
nndist_eq πŸ“–mathematicalβ€”NNDist.nndist
PseudoMetricSpace.toNNDist
DFunLike.coe
β€”Isometry.nndist_eq
isometry
toContinuousMapClass πŸ“–mathematicalβ€”ContinuousMapClass
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”continuous
toHomeomorphClass πŸ“–mathematicalβ€”HomeomorphClass
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”continuous
Isometry.continuous
Isometry.right_inv
isometry
EquivLike.right_inv
toIsometryEquiv_injective πŸ“–mathematicalβ€”IsometryEquiv
toIsometryEquiv
β€”DFunLike.ext
DFunLike.congr_fun

IsometryEquiv

Definitions

NameCategoryTheorems
funUnique πŸ“–CompOp
2 mathmath: funUnique_apply, funUnique_symm_apply
instEquivLike πŸ“–CompOp
122 mathmath: image_sphere, image_emetric_closedBall, dimH_preimage, LinearIsometryEquiv.coe_symm_toIsometryEquiv, preimage_sphere, toRealLinearIsometryEquiv_symm_apply, range_eq_univ, apply_symm_apply, withLpUniqueProd_symm_apply, subLeft_symm_apply, toRealLinearIsometryEquiv_apply, withLpProdUnique_apply, neg_apply, preimage_emetric_closedBall, coe_toHomeomorph, inv_apply_self, piCongrLeft'_apply, constVSub_symm_apply, image_emetric_ball, divLeft_apply, subRight_apply, image_closedEBall, symm_apply_apply, Fin.appendIsometry_symm_apply, diam_image, edist_eq, hausdorffMeasure_image, ediam_preimage, Delone.DeloneSet.mapIsometry_symm_apply_carrier, preimage_emetric_ball, comp_continuousOn_iff, image_eball, ext_iff, Fin.appendIsometryOfEq_apply, divRight_apply, divLeft_symm_apply, instIsometryClass, preimage_closedEBall, mulLeft_apply, map_midpoint, addLeft_apply, LinearIsometryEquiv.coe_toIsometryEquiv, coe_withLpProdUnique, map_hausdorffMeasure, bijective, piFinTwo_symm_apply, hausdorffMeasure_preimage, sumArrowIsometryEquivProdArrow_symm_apply, withLpProdCongr_apply, piCongrLeft_symm_apply, ediam_image, Isometry.isometryEquivOnRange_apply, measurePreserving_hausdorffMeasure, funUnique_apply, coe_withLpUniqueProd, dimH_image, diam_preimage, toDilationEquiv_toDilation, apply_inv_self, coe_eq_toEquiv, AffineIsometryEquiv.coe_toIsometryEquiv, MeasureTheory.OuterMeasure.isometryEquiv_map_mkMetric, addRight_apply, comp_continuous_iff', piCongrLeft_apply, coe_toEquiv, Fin.appendIsometryOfEq_symm_apply, image_closedBall, dist_eq, vaddConst_apply, withLpProdUnique_symm_apply, piCongrLeft'_symm_apply, withLpProdAssoc_apply, withLpUniqueProd_apply, symm_apply_eq, toDilationEquiv_apply, funUnique_symm_apply, constVSub_apply, coe_mul, coeFn_toRealAffineIsometryEquiv, coe_symm_toEquiv, eq_symm_apply, injective, constVAdd_apply, constSMul_apply, image_symm, vaddConst_symm_apply, piFinTwo_apply, coe_one, coe_symm_toDilationEquiv, Fin.appendIsometry_apply, symm_comp_self, mul_apply, image_ball, withLpProdAssoc_symm_apply, ContinuousMap.isometryEquivBoundedOfCompact_symm_apply, AffineIsometryEquiv.coe_symm_toIsometryEquiv, nndist_eq, mulRight_apply, subLeft_apply, coe_mk, withLpProdCongr_symm_apply, withLpProdComm_apply, ContinuousMap.isometryEquivBoundedOfCompact_apply, continuous, preimage_symm, sumArrowIsometryEquivProdArrow_apply, preimage_closedBall, preimage_ball, coe_toDilationEquiv, coe_toHomeomorph_symm, symm_trans_apply, isometry, surjective, preimage_eball, inv_apply, trans_apply, Delone.DeloneSet.mapIsometry_apply_carrier, self_comp_symm, comp_continuous_iff, MeasureTheory.OuterMeasure.isometryEquiv_comap_mkMetric, IsometryClass.coe_coe
instGroup πŸ“–CompOp
5 mathmath: inv_apply_self, apply_inv_self, coe_mul, coe_one, mul_apply
mk' πŸ“–CompOpβ€”
piCongrLeft πŸ“–CompOp
2 mathmath: piCongrLeft_symm_apply, piCongrLeft_apply
piCongrLeft' πŸ“–CompOp
4 mathmath: piCongrLeft'_apply, piCongrLeft_symm_apply, piCongrLeft_apply, piCongrLeft'_symm_apply
piFinTwo πŸ“–CompOp
2 mathmath: piFinTwo_symm_apply, piFinTwo_apply
refl πŸ“–CompOp
2 mathmath: AffineIsometryEquiv.toIsometryEquiv_refl, Delone.DeloneSet.mapIsometry_refl
sumArrowIsometryEquivProdArrow πŸ“–CompOp
3 mathmath: sumArrowIsometryEquivProdArrow_toHomeomorph, sumArrowIsometryEquivProdArrow_symm_apply, sumArrowIsometryEquivProdArrow_apply
toEquiv πŸ“–CompOp
21 mathmath: neg_toEquiv, toEquiv_inj, constVAdd_toEquiv, constSMul_toEquiv, mulRight_toEquiv, divLeft_toEquiv, Isometry.isometryEquivOnRange_toEquiv, subLeft_toEquiv, inv_toEquiv, coe_eq_toEquiv, coe_toEquiv, isometry_toFun, toEquiv_injective, ContinuousMap.isometryEquivBoundedOfCompact_toEquiv, coe_symm_toEquiv, subRight_toEquiv, addRight_toEquiv, toEquiv_toHomeomorph, mulLeft_toEquiv, divRight_toEquiv, addLeft_toEquiv
toHomeomorph πŸ“–CompOp
5 mathmath: sumArrowIsometryEquivProdArrow_toHomeomorph, coe_toHomeomorph, Fin.appendIsometry_toHomeomorph, toEquiv_toHomeomorph, coe_toHomeomorph_symm
trans πŸ“–CompOp
4 mathmath: Delone.DeloneSet.mapIsometry_trans, LinearIsometryEquiv.toIsometryEquiv_trans, symm_trans_apply, trans_apply

Theorems

NameKindAssumesProvesValidatesDepends On
apply_inv_self πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
β€”apply_symm_apply
apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.apply_symm_apply
bijective πŸ“–mathematicalβ€”Function.Bijective
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
β€”Equiv.bijective
coe_eq_toEquiv πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
Equiv
Equiv.instEquivLike
toEquiv
β€”β€”
coe_mk πŸ“–mathematicalIsometry
Equiv.toFun
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
Equiv
Equiv.instEquivLike
β€”β€”
coe_mul πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
β€”β€”
coe_one πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
β€”β€”
coe_symm_toEquiv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toEquiv
IsometryEquiv
instEquivLike
symm
β€”β€”
coe_toEquiv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toEquiv
IsometryEquiv
instEquivLike
β€”β€”
coe_toHomeomorph πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
toHomeomorph
IsometryEquiv
instEquivLike
β€”β€”
coe_toHomeomorph_symm πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
toHomeomorph
IsometryEquiv
instEquivLike
symm
β€”β€”
comp_continuousOn_iff πŸ“–mathematicalβ€”ContinuousOn
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
β€”Homeomorph.comp_continuousOn_iff
comp_continuous_iff πŸ“–mathematicalβ€”Continuous
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
β€”Homeomorph.comp_continuous_iff
comp_continuous_iff' πŸ“–mathematicalβ€”Continuous
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
β€”Homeomorph.comp_continuous_iff'
completeSpace πŸ“–mathematicalβ€”CompleteSpace
PseudoEMetricSpace.toUniformSpace
β€”completeSpace_iff
completeSpace_iff πŸ“–mathematicalβ€”CompleteSpace
PseudoEMetricSpace.toUniformSpace
β€”range_eq_univ
isComplete_image_iff
Isometry.isUniformInducing
isometry
continuous πŸ“–mathematicalβ€”Continuous
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
β€”Isometry.continuous
isometry
diam_image πŸ“–mathematicalβ€”Metric.diam
Set.image
DFunLike.coe
IsometryEquiv
PseudoMetricSpace.toPseudoEMetricSpace
EquivLike.toFunLike
instEquivLike
β€”Isometry.diam_image
isometry
diam_preimage πŸ“–mathematicalβ€”Metric.diam
Set.preimage
DFunLike.coe
IsometryEquiv
PseudoMetricSpace.toPseudoEMetricSpace
EquivLike.toFunLike
instEquivLike
β€”image_symm
diam_image
diam_univ πŸ“–mathematicalβ€”Metric.diam
Set.univ
β€”ediam_univ
dist_eq πŸ“–mathematicalβ€”Dist.dist
PseudoMetricSpace.toDist
DFunLike.coe
IsometryEquiv
PseudoMetricSpace.toPseudoEMetricSpace
EquivLike.toFunLike
instEquivLike
β€”Isometry.dist_eq
isometry
ediam_image πŸ“–mathematicalβ€”Metric.ediam
Set.image
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
β€”Isometry.ediam_image
isometry
ediam_preimage πŸ“–mathematicalβ€”Metric.ediam
Set.preimage
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
β€”image_symm
ediam_image
ediam_univ πŸ“–mathematicalβ€”Metric.ediam
Set.univ
β€”range_eq_univ
Isometry.ediam_range
isometry
edist_eq πŸ“–mathematicalβ€”EDist.edist
PseudoEMetricSpace.toEDist
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
β€”Isometry.edist_eq
isometry
eq_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.eq_symm_apply
ext πŸ“–β€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
β€”ext
funUnique_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
pseudoEMetricSpacePi
EquivLike.toFunLike
instEquivLike
funUnique
Unique.instInhabited
β€”β€”
funUnique_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
pseudoEMetricSpacePi
EquivLike.toFunLike
instEquivLike
symm
funUnique
β€”β€”
image_ball πŸ“–mathematicalβ€”Set.image
DFunLike.coe
IsometryEquiv
PseudoMetricSpace.toPseudoEMetricSpace
EquivLike.toFunLike
instEquivLike
Metric.ball
β€”preimage_symm
preimage_ball
symm_symm
image_closedBall πŸ“–mathematicalβ€”Set.image
DFunLike.coe
IsometryEquiv
PseudoMetricSpace.toPseudoEMetricSpace
EquivLike.toFunLike
instEquivLike
Metric.closedBall
β€”preimage_symm
preimage_closedBall
symm_symm
image_closedEBall πŸ“–mathematicalβ€”Set.image
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
Metric.closedEBall
β€”preimage_symm
preimage_closedEBall
symm_symm
image_eball πŸ“–mathematicalβ€”Set.image
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
Metric.eball
β€”preimage_symm
preimage_eball
symm_symm
image_emetric_ball πŸ“–mathematicalβ€”Set.image
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
Metric.eball
β€”image_eball
image_emetric_closedBall πŸ“–mathematicalβ€”Set.image
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
Metric.closedEBall
β€”image_closedEBall
image_sphere πŸ“–mathematicalβ€”Set.image
DFunLike.coe
IsometryEquiv
PseudoMetricSpace.toPseudoEMetricSpace
EquivLike.toFunLike
instEquivLike
Metric.sphere
β€”preimage_symm
preimage_sphere
symm_symm
image_symm πŸ“–mathematicalβ€”Set.image
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
symm
Set.preimage
β€”Set.image_eq_preimage_of_inverse
Equiv.left_inv
Equiv.right_inv
injective πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
β€”Equiv.injective
instIsometryClass πŸ“–mathematicalβ€”IsometryClass
IsometryEquiv
EquivLike.toFunLike
instEquivLike
β€”isometry_toFun
inv_apply_self πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
β€”symm_apply_apply
isometry πŸ“–mathematicalβ€”Isometry
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
β€”isometry_toFun
isometry_toFun πŸ“–mathematicalβ€”Isometry
Equiv.toFun
toEquiv
β€”β€”
mul_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
β€”β€”
nndist_eq πŸ“–mathematicalβ€”NNDist.nndist
PseudoMetricSpace.toNNDist
DFunLike.coe
IsometryEquiv
PseudoMetricSpace.toPseudoEMetricSpace
EquivLike.toFunLike
instEquivLike
β€”Isometry.nndist_eq
isometry
piCongrLeft'_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
pseudoEMetricSpacePi
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
instEquivLike
piCongrLeft'
β€”β€”
piCongrLeft'_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
pseudoEMetricSpacePi
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
instEquivLike
symm
piCongrLeft'
Equiv.symm_apply_apply
β€”β€”
piCongrLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
pseudoEMetricSpacePi
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
instEquivLike
piCongrLeft
symm
piCongrLeft'
Equiv.symm
β€”β€”
piCongrLeft_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
pseudoEMetricSpacePi
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
instEquivLike
symm
piCongrLeft
piCongrLeft'
Equiv.symm
β€”β€”
piFinTwo_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
pseudoEMetricSpacePi
Fin.fintype
Prod.pseudoEMetricSpaceMax
EquivLike.toFunLike
instEquivLike
piFinTwo
β€”β€”
piFinTwo_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
Prod.pseudoEMetricSpaceMax
pseudoEMetricSpacePi
Fin.fintype
EquivLike.toFunLike
instEquivLike
symm
piFinTwo
Fin.cons
finZeroElim
β€”β€”
preimage_ball πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
IsometryEquiv
PseudoMetricSpace.toPseudoEMetricSpace
EquivLike.toFunLike
instEquivLike
Metric.ball
symm
β€”Isometry.preimage_ball
isometry
apply_symm_apply
preimage_closedBall πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
IsometryEquiv
PseudoMetricSpace.toPseudoEMetricSpace
EquivLike.toFunLike
instEquivLike
Metric.closedBall
symm
β€”Isometry.preimage_closedBall
isometry
apply_symm_apply
preimage_closedEBall πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
Metric.closedEBall
symm
β€”Isometry.preimage_closedEBall
isometry
apply_symm_apply
preimage_eball πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
Metric.eball
symm
β€”Isometry.preimage_eball
isometry
apply_symm_apply
preimage_emetric_ball πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
Metric.eball
symm
β€”preimage_eball
preimage_emetric_closedBall πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
Metric.closedEBall
symm
β€”preimage_closedEBall
preimage_sphere πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
IsometryEquiv
PseudoMetricSpace.toPseudoEMetricSpace
EquivLike.toFunLike
instEquivLike
Metric.sphere
symm
β€”Isometry.preimage_sphere
isometry
apply_symm_apply
preimage_symm πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
symm
Set.image
β€”Set.image_eq_preimage_of_inverse
Equiv.left_inv
Equiv.right_inv
range_eq_univ πŸ“–mathematicalβ€”Set.range
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
Set.univ
β€”EquivLike.range_eq_univ
self_comp_symm πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.right_inv
sumArrowIsometryEquivProdArrow_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
pseudoEMetricSpacePi
instFintypeSum
Prod.pseudoEMetricSpaceMax
EquivLike.toFunLike
instEquivLike
sumArrowIsometryEquivProdArrow
β€”β€”
sumArrowIsometryEquivProdArrow_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
Prod.pseudoEMetricSpaceMax
pseudoEMetricSpacePi
instFintypeSum
EquivLike.toFunLike
instEquivLike
symm
sumArrowIsometryEquivProdArrow
β€”β€”
sumArrowIsometryEquivProdArrow_toHomeomorph πŸ“–mathematicalβ€”toHomeomorph
pseudoEMetricSpacePi
instFintypeSum
Prod.pseudoEMetricSpaceMax
sumArrowIsometryEquivProdArrow
Homeomorph.sumArrowHomeomorphProdArrow
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”β€”
surjective πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
β€”Equiv.surjective
symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.symm_apply_apply
symm_apply_eq πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.symm_apply_eq
symm_bijective πŸ“–mathematicalβ€”Function.Bijective
IsometryEquiv
symm
β€”Function.bijective_iff_has_inverse
symm_symm
symm_comp_self πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.left_inv
symm_symm πŸ“–mathematicalβ€”symmβ€”β€”
symm_trans_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
symm
trans
β€”β€”
toEquiv_inj πŸ“–mathematicalβ€”toEquivβ€”toEquiv_injective
toEquiv_injective πŸ“–mathematicalβ€”IsometryEquiv
Equiv
toEquiv
β€”β€”
toEquiv_toHomeomorph πŸ“–mathematicalβ€”Homeomorph.toEquiv
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
toHomeomorph
toEquiv
β€”β€”
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
trans
β€”β€”

IsometryEquiv.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”
symm_apply πŸ“–CompOpβ€”

MetricSpace

Theorems

NameKindAssumesProvesValidatesDepends On
isometry_induced πŸ“–mathematicalβ€”Isometry
EMetricSpace.toPseudoEMetricSpace
toEMetricSpace
induced
β€”β€”

PseudoEMetricSpace

Theorems

NameKindAssumesProvesValidatesDepends On
isometry_induced πŸ“–mathematicalβ€”Isometry
induced
β€”β€”

PseudoMetricSpace

Theorems

NameKindAssumesProvesValidatesDepends On
isometry_induced πŸ“–mathematicalβ€”Isometry
toPseudoEMetricSpace
induced
β€”β€”

QuadraticMap

Definitions

NameCategoryTheorems
Isometry πŸ“–CompData
29 mathmath: Isometry.ext_iff, Isometry.inl_apply, Isometry.single_apply, QuadraticModuleCat.forgetβ‚‚_map_associator_inv, QuadraticModuleCat.forgetβ‚‚_map, CategoryTheory.Iso.toIsometryEquiv_toFun, IsometryEquiv.toIsometry_apply, Isometry.snd_comp_inl, Isometry.snd_apply, CliffordAlgebra.map_apply_ΞΉ, Isometry.comp_apply, Isometry.map_app, QuadraticModuleCat.forgetβ‚‚_map_associator_hom, Isometry.proj_comp_single_of_ne, QuadraticModuleCat.Hom.toIsometry_injective, QuadraticModuleCat.forgetβ‚‚_obj, Isometry.instLinearMapClass, QuadraticForm.toDualProd_apply, Isometry.proj_apply, Isometry.fst_apply, Isometry.instSubsingleton, Isometry.fst_comp_inr, CategoryTheory.Iso.toIsometryEquiv_invFun, Isometry.inr_apply, Isometry.toLinearMap_injective, Isometry.tmul_apply, Isometry.id_apply, Isometry.ofEq_apply, Isometry.coe_toLinearMap

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
to_isometry πŸ“–mathematicalTopology.IsEmbedding
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Isometry
PseudoMetricSpace.toPseudoEMetricSpace
Topology.IsInducing.comapPseudoMetricSpace
toIsInducing
β€”toIsInducing
Isometry.of_dist_eq

(root)

Definitions

NameCategoryTheorems
Isometry πŸ“–MathDef
101 mathmath: Unitization.isometry_inr, NumberField.InfinitePlace.Completion.isometry_extensionEmbeddingOfIsReal, isometry_subsingleton, NonUnitalIsometricContinuousFunctionalCalculus.isometric, NumberField.InfinitePlace.isometry_embedding, GromovHausdorff.isometry_optimalGHInjr, Isometry.single, AddMonoidHomClass.isometry_of_norm, EMetric.NonemptyCompacts.isometry_toCloseds, ContinuousLinearMap.isometry_mul_flip, UniformOnFun.isometry_restrict, UpperHalfPlane.isometry_real_vadd, EMetric.Closeds.isometry_singleton, ContinuousMapZero.isometry_toContinuousMap, PseudoEMetricSpace.isometry_induced, UpperHalfPlane.isometry_vertical_line, TopologicalSpace.NonemptyCompacts.isometry_singleton, Complex.isometry_conj, WithAbs.isometry_of_comp, RegularNormedAlgebra.isometry_mul', NumberField.InfinitePlace.Completion.isometry_extensionEmbedding, star_isometry, UniformFun.isometry_ofFun_continuousMap, MulOpposite.isometry_opLinearEquiv, NormedAddGroupHom.isometry_id, PseudoMetricSpace.isometry_induced, WithLp.prod_isometry_ofLp_infty, isometry_cfcβ‚™Hom, Complex.isometry_ofReal, Isometry.of_dist_eq, isometry_mul_left, algebraMap_isometry, RingHom.isometry, TopologicalSpace.Closeds.isometry_singleton, BoundedContinuousFunction.isometry_extend, UniformFun.isometry_ofFun_boundedContinuousFunction, UniformSpace.Completion.coe_isometry, TopologicalSpace.Compacts.isometry_singleton, isometry_iff_dist_eq, MonoidHomClass.isometry_iff_norm, GromovHausdorff.ghDist_eq_hausdorffDist, SemiNormedGrp₁.iso_isometry, Isometry.of_nndist_eq, KuratowskiEmbedding.embeddingOfSubset_isometry, TopologicalSpace.NonemptyCompacts.isometry_toCloseds, EMetricSpace.isometry_induced, GromovHausdorff.AuxGluingStruct.isom, ContinuousLinearMap.isometry_mul, IsIsometricVAdd.isometry_vadd, Isometry.inl, LinearIsometry.isometry, AffineIsometry.isometry, NumberField.InfinitePlace.isometry_embedding_of_isReal, LinearIsometryEquiv.isometry, AbsoluteValue.Completion.isometry_extensionEmbedding_of_comp, Metric.isometry_inl, IsometryEquiv.isometry_toFun, AddMonoidHomClass.isometry_iff_norm, ZeroAtInftyContinuousMap.isometry_toBCF, isometry_add_left, isometry_mul_right, NonUnitalStarAlgHom.isometry, IsIsometricSMul.isometry_smul, PiLp.isometry_ofLp_infty, Isometry.inr, MonoidHomClass.isometry_of_norm, EMetric.NonemptyCompacts.isometry_singleton, NumberField.InfinitePlace.Completion.isometry_extensionEmbedding_of_isReal, Topology.IsEmbedding.to_isometry, lp.isometry_single, Metric.Sigma.isometry_mk, isometry_subtype_coe, isometry_add_right, gelfandTransform_isometry, MeasureTheory.isometry_lpMeasSubgroupToLpTrim, KuratowskiEmbedding.exists_isometric_embedding, isometry_neg, isometry_iff_nndist_eq, Metric.isometry_inr, IsometricContinuousFunctionalCalculus.isometric, SemiNormedGrp.iso_isometry_of_normNoninc, isometry_inv, IsometryClass.isometry, MetricSpace.isometry_induced, Metric.PiNatEmbed.isometry_embed, UpperHalfPlane.isometry_pos_mul, isometry_id, TopologicalSpace.Compacts.isometry_toCloseds, TopologicalSpace.NonemptyCompacts.isometry_toCompacts, AffineIsometryEquiv.isometry, GromovHausdorff.isometry_optimalGHInjl, WithLp.unitization_isometry_inr, GromovHausdorff.eq_toGHSpace_iff, SemilinearIsometryClass.isometry, IsUniformEmbedding.to_isometry, MeasureTheory.Lp.isometry_compMeasurePreserving, IsometryEquiv.isometry, StarAlgEquiv.isometry, Complex.isometry_intCast, kuratowskiEmbedding.isometry, isometry_cfcHom
IsometryClass πŸ“–CompData
1 mathmath: IsometryEquiv.instIsometryClass
Β«term_≃ᡒ_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isometry_id πŸ“–mathematicalβ€”Isometryβ€”β€”
isometry_iff_dist_eq πŸ“–mathematicalβ€”Isometry
PseudoMetricSpace.toPseudoEMetricSpace
Dist.dist
PseudoMetricSpace.toDist
β€”β€”
isometry_iff_nndist_eq πŸ“–mathematicalβ€”Isometry
PseudoMetricSpace.toPseudoEMetricSpace
NNDist.nndist
PseudoMetricSpace.toNNDist
β€”edist_nndist
isometry_subsingleton πŸ“–mathematicalβ€”Isometryβ€”PseudoEMetricSpace.edist_self
isometry_subtype_coe πŸ“–mathematicalβ€”Isometry
Set
Set.instMembership
instPseudoEMetricSpaceSubtype
β€”β€”

---

← Back to Index