Documentation Verification Report

Kuratowski

📁 Source: Mathlib/Topology/MetricSpace/Kuratowski.lean

Statistics

MetricCount
DefinitionsembeddingOfSubset, kuratowskiEmbedding, kuratowskiEmbedding
3
TheoremsembeddingOfSubset_coe, embeddingOfSubset_dist_le, embeddingOfSubset_isometry, exists_isometric_embedding, extend_lp_infty, isometry
6
Total9

KuratowskiEmbedding

Definitions

NameCategoryTheorems
embeddingOfSubset 📖CompOp
3 mathmath: embeddingOfSubset_isometry, embeddingOfSubset_dist_le, embeddingOfSubset_coe

Theorems

NameKindAssumesProvesValidatesDepends On
embeddingOfSubset_coe 📖mathematicalPreLp
Real
Real.normedAddCommGroup
AddSubgroup
AddCommGroup.toAddGroup
instAddCommGroupPreLp
SetLike.instMembership
AddSubgroup.instSetLike
lp
Top.top
ENNReal
instTopENNReal
embeddingOfSubset
Real.instSub
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
embeddingOfSubset_dist_le 📖mathematicalReal
Real.instLE
Dist.dist
PreLp
Real.normedAddCommGroup
AddSubgroup
AddCommGroup.toAddGroup
instAddCommGroupPreLp
SetLike.instMembership
AddSubgroup.instSetLike
lp
Top.top
ENNReal
instTopENNReal
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
lp.inftyNormedCommRing
Real.normedCommRing
NormedDivisionRing.to_normOneClass
NormedField.toNormedDivisionRing
Real.normedField
embeddingOfSubset
MetricSpace.toPseudoMetricSpace
lp.norm_le_of_forall_le
dist_nonneg
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
abs_dist_sub_le
embeddingOfSubset_isometry 📖mathematicalDenseRange
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Isometry
PreLp
Real
Real.normedAddCommGroup
AddSubgroup
AddCommGroup.toAddGroup
instAddCommGroupPreLp
SetLike.instMembership
AddSubgroup.instSetLike
lp
Top.top
ENNReal
instTopENNReal
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedRing.toMetricSpace
lp.inftyNormedRing
NormedCommRing.toNormedRing
Real.normedCommRing
NormedDivisionRing.to_normOneClass
NormedField.toNormedDivisionRing
Real.normedField
embeddingOfSubset
Isometry.of_dist_eq
NormedDivisionRing.to_normOneClass
LE.le.antisymm
embeddingOfSubset_dist_le
le_of_forall_pos_le_add
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.instAtLeastTwoHAddOfNat
Metric.mem_closure_range_iff
half_pos
sub_sub_sub_cancel_right
dist_triangle
dist_comm
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
le_imp_le_of_le_of_le
le_refl
add_le_add_right
le_abs_self
add_le_add_left
covariant_swap_add_of_covariant_add
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
dist_eq_norm
lp.norm_apply_le_norm
ENNReal.top_ne_zero
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
exists_isometric_embedding 📖mathematicalIsometry
PreLp
Real
Real.normedAddCommGroup
AddSubgroup
AddCommGroup.toAddGroup
instAddCommGroupPreLp
SetLike.instMembership
AddSubgroup.instSetLike
lp
Top.top
ENNReal
instTopENNReal
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedRing.toMetricSpace
lp.inftyNormedRing
NormedCommRing.toNormedRing
Real.normedCommRing
NormedDivisionRing.to_normOneClass
NormedField.toNormedDivisionRing
Real.normedField
NormedDivisionRing.to_normOneClass
Set.eq_empty_or_nonempty
Set.Nonempty.ne_empty
Set.mem_univ
TopologicalSpace.exists_countable_dense
Set.countable_iff_exists_subset_range
embeddingOfSubset_isometry
Dense.mono

LipschitzOnWith

Theorems

NameKindAssumesProvesValidatesDepends On
extend_lp_infty 📖mathematicalLipschitzOnWith
PreLp
Real
Real.normedAddCommGroup
AddSubgroup
AddCommGroup.toAddGroup
instAddCommGroupPreLp
SetLike.instMembership
AddSubgroup.instSetLike
lp
Top.top
ENNReal
instTopENNReal
PseudoMetricSpace.toPseudoEMetricSpace
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedRing.toMetricSpace
lp.inftyNormedRing
NormedCommRing.toNormedRing
Real.normedCommRing
NormedDivisionRing.to_normOneClass
NormedField.toNormedDivisionRing
Real.normedField
LipschitzWith
Set.EqOn
NormedDivisionRing.to_normOneClass
extend_real
coordinate
Set.eq_empty_or_nonempty
LipschitzWith.const'
LipschitzWith.uniformly_bounded
lp.norm_apply_le_norm
ENNReal.top_ne_zero
LipschitzWith.coordinate
lp.ext

NonemptyCompacts

Definitions

NameCategoryTheorems
kuratowskiEmbedding 📖CompOp

(root)

Definitions

NameCategoryTheorems
kuratowskiEmbedding 📖CompOp
1 mathmath: kuratowskiEmbedding.isometry

kuratowskiEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
isometry 📖mathematicalIsometry
PreLp
Real
Real.normedAddCommGroup
AddSubgroup
AddCommGroup.toAddGroup
instAddCommGroupPreLp
SetLike.instMembership
AddSubgroup.instSetLike
lp
Top.top
ENNReal
instTopENNReal
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedRing.toMetricSpace
lp.inftyNormedRing
NormedCommRing.toNormedRing
Real.normedCommRing
NormedDivisionRing.to_normOneClass
NormedField.toNormedDivisionRing
Real.normedField
kuratowskiEmbedding
NormedDivisionRing.to_normOneClass
KuratowskiEmbedding.exists_isometric_embedding

---

← Back to Index