Documentation Verification Report

MetricSeparated

📁 Source: Mathlib/Topology/MetricSpace/MetricSeparated.lean

Statistics

MetricCount
DefinitionsAreSeparated, IsSeparated
2
Theoremscomm, disjoint, empty_left, empty_right, finite_iUnion_left, finite_iUnion_left_iff, finite_iUnion_right_iff, finset_iUnion_left, finset_iUnion_left_iff, finset_iUnion_right, finset_iUnion_right_iff, mono, mono_left, mono_right, subset_compl_right, union_left, union_left_iff, union_right, union_right_iff, anti, empty, image_antilipschitz, insert, of_subsingleton, singleton, subset, isSeparated_iff_setRelIsSeparated, isSeparated_insert, isSeparated_insert_of_notMem, isSeparated_zero, isSeparated
31
Total33

Metric

Definitions

NameCategoryTheorems
AreSeparated 📖MathDef
9 mathmath: AreSeparated.finset_iUnion_right_iff, AreSeparated.empty_left, AreSeparated.comm, AreSeparated.finite_iUnion_right_iff, AreSeparated.empty_right, AreSeparated.finite_iUnion_left_iff, AreSeparated.union_left_iff, AreSeparated.union_right_iff, AreSeparated.finset_iUnion_left_iff
IsSeparated 📖MathDef
11 mathmath: isSeparated_insert_of_notMem, isSeparated_iff_setRelIsSeparated, IsSeparated.of_subsingleton, isSeparated_insert, IsSeparated.singleton, isSeparated_maximalSeparatedSet, isSeparated_zero, IsSeparated.empty, Set.Subsingleton.isSeparated, Delone.DeloneSet.isSeparated_packingRadius, exists_set_encard_eq_packingNumber

Theorems

NameKindAssumesProvesValidatesDepends On
isSeparated_iff_setRelIsSeparated 📖mathematicalIsSeparated
SetRel.IsSeparated
setOf
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
isSeparated_insert 📖mathematicalIsSeparated
Set
Set.instInsert
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Set.pairwise_insert_of_symmetric
PseudoEMetricSpace.edist_comm
isSeparated_insert_of_notMem 📖mathematicalSet
Set.instMembership
IsSeparated
Set.instInsert
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Set.pairwise_insert_of_symmetric_of_notMem
PseudoEMetricSpace.edist_comm
isSeparated_zero 📖mathematicalIsSeparated
EMetricSpace.toPseudoEMetricSpace
ENNReal
instZeroENNReal

Metric.AreSeparated

Theorems

NameKindAssumesProvesValidatesDepends On
comm 📖mathematicalMetric.AreSeparatedsymm
disjoint 📖mathematicalMetric.AreSeparatedDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.disjoint_left
PseudoEMetricSpace.edist_self
ENNReal.instCanonicallyOrderedAdd
empty_left 📖mathematicalMetric.AreSeparated
Set
Set.instEmptyCollection
one_ne_zero
NeZero.charZero_one
ENNReal.instCharZero
empty_right 📖mathematicalMetric.AreSeparated
Set
Set.instEmptyCollection
symm
empty_left
finite_iUnion_left 📖mathematicalMetric.AreSeparatedSet.iUnion
Set
Set.instMembership
finite_iUnion_left_iff
finite_iUnion_left_iff 📖mathematicalMetric.AreSeparated
Set.iUnion
Set
Set.instMembership
Set.Finite.induction_on
Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
Set.biUnion_insert
Set.forall_mem_insert
union_left_iff
finite_iUnion_right_iff 📖mathematicalMetric.AreSeparated
Set.iUnion
Set
Set.instMembership
comm
finite_iUnion_left_iff
finset_iUnion_left 📖mathematicalMetric.AreSeparatedSet.iUnion
Finset
Finset.instMembership
finset_iUnion_left_iff
finset_iUnion_left_iff 📖mathematicalMetric.AreSeparated
Set.iUnion
Finset
Finset.instMembership
finite_iUnion_left_iff
Finset.finite_toSet
finset_iUnion_right 📖mathematicalMetric.AreSeparatedSet.iUnion
Finset
Finset.instMembership
finset_iUnion_right_iff
finset_iUnion_right_iff 📖mathematicalMetric.AreSeparated
Set.iUnion
Finset
Finset.instMembership
finite_iUnion_right_iff
Finset.finite_toSet
mono 📖Set
Set.instHasSubset
Metric.AreSeparated
mono_left 📖Metric.AreSeparated
Set
Set.instHasSubset
mono
Set.Subset.rfl
mono_right 📖Metric.AreSeparated
Set
Set.instHasSubset
mono
Set.Subset.rfl
subset_compl_right 📖mathematicalMetric.AreSeparatedSet
Set.instHasSubset
Compl.compl
Set.instCompl
Disjoint.le_bot
disjoint
union_left 📖mathematicalMetric.AreSeparatedSet
Set.instUnion
pos_iff_ne_zero
ENNReal.instCanonicallyOrderedAdd
lt_min
LE.le.trans
min_le_left
min_le_right
union_left_iff 📖mathematicalMetric.AreSeparated
Set
Set.instUnion
mono_left
Set.subset_union_left
Set.subset_union_right
union_left
union_right 📖mathematicalMetric.AreSeparatedSet
Set.instUnion
symm
union_left
union_right_iff 📖mathematicalMetric.AreSeparated
Set
Set.instUnion
comm
union_left_iff

Metric.IsSeparated

Theorems

NameKindAssumesProvesValidatesDepends On
anti 📖ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.IsSeparated
Set.Pairwise.mono'
LE.le.trans_lt
empty 📖mathematicalMetric.IsSeparated
Set
Set.instEmptyCollection
Set.pairwise_empty
image_antilipschitz 📖mathematicalMetric.IsSeparated
ENNReal.ofNNReal
AntilipschitzWith
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
NNReal.instDiv
Set.image
lt_of_lt_of_le
mul_comm
ENNReal.div_lt_of_lt_mul
ENNReal.coe_div
LT.lt.ne'
insert 📖mathematicalMetric.IsSeparated
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Set
Set.instInsert
Metric.isSeparated_insert
of_subsingleton 📖mathematicalSet.SubsingletonMetric.IsSeparatedSet.Subsingleton.pairwise
singleton 📖mathematicalMetric.IsSeparated
Set
Set.instSingletonSet
Set.pairwise_singleton
subset 📖Set
Set.instHasSubset
Metric.IsSeparated
Set.Pairwise.mono

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
isSeparated 📖mathematicalSet.SubsingletonMetric.IsSeparatedMetric.IsSeparated.of_subsingleton

---

← Back to Index