Documentation Verification Report

PartitionOfUnity

📁 Source: Mathlib/Topology/MetricSpace/PartitionOfUnity.lean

Statistics

MetricCount
Definitions0
Theoremseventually_nhds_zero_forall_closedBall_subset, exists_continuous_eNNReal_forall_closedBall_subset, exists_continuous_nnreal_forall_closedBall_subset, exists_continuous_real_forall_closedBall_subset, exists_forall_closedBall_subset_aux₁, exists_forall_closedBall_subset_aux₂, eventually_nhds_zero_forall_closedEBall_subset, exists_continuous_ennreal_forall_closedEBall_subset, exists_continuous_nnreal_forall_closedBall_subset, exists_continuous_nnreal_forall_closedEBall_subset, exists_continuous_real_forall_closedBall_subset, exists_continuous_real_forall_closedEBall_subset, exists_forall_closedEBall_subset_aux₁, exists_forall_closedEBall_subset_aux₂
14
Total14

EMetric

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_nhds_zero_forall_closedBall_subset 📖mathematicalIsClosed
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
IsOpen
Set
Set.instHasSubset
LocallyFinite
Filter.Eventually
ENNReal
SProd.sprod
Filter
Filter.instSProd
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
Metric.eventually_nhds_zero_forall_closedEBall_subset
exists_continuous_eNNReal_forall_closedBall_subset 📖mathematicalIsClosed
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
IsOpen
Set
Set.instHasSubset
LocallyFinite
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
ContinuousMap
ENNReal.instTopologicalSpace
ContinuousMap.instFunLike
Metric.closedEBall
Metric.exists_continuous_ennreal_forall_closedEBall_subset
exists_continuous_nnreal_forall_closedBall_subset 📖mathematicalIsClosed
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
IsOpen
Set
Set.instHasSubset
LocallyFinite
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
DFunLike.coe
ContinuousMap
NNReal.instTopologicalSpace
ContinuousMap.instFunLike
Metric.closedEBall
ENNReal.ofNNReal
Metric.exists_continuous_nnreal_forall_closedEBall_subset
exists_continuous_real_forall_closedBall_subset 📖mathematicalIsClosed
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
IsOpen
Set
Set.instHasSubset
LocallyFinite
Real
Real.instLT
Real.instZero
DFunLike.coe
ContinuousMap
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
Metric.closedEBall
ENNReal.ofReal
Metric.exists_continuous_real_forall_closedEBall_subset
exists_forall_closedBall_subset_aux₁ 📖mathematicalIsClosed
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
IsOpen
Set
Set.instHasSubset
LocallyFinite
Filter.Eventually
Real
Set.instMembership
Set.instInter
Set.Ioi
Real.instPreorder
Real.instZero
Set.preimage
ENNReal
ENNReal.ofReal
Set.iInter
setOf
Metric.closedEBall
nhds
Metric.exists_forall_closedEBall_subset_aux₁
exists_forall_closedBall_subset_aux₂ 📖mathematicalConvex
Real
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set
Set.instInter
Set.Ioi
Real.instPreorder
Real.instZero
Set.preimage
ENNReal
ENNReal.ofReal
Set.iInter
Set.instMembership
setOf
Set.instHasSubset
Metric.closedEBall
EMetricSpace.toPseudoEMetricSpace
Metric.exists_forall_closedEBall_subset_aux₂

Metric

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_nhds_zero_forall_closedEBall_subset 📖mathematicalIsClosed
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
IsOpen
Set
Set.instHasSubset
LocallyFinite
Filter.Eventually
ENNReal
SProd.sprod
Filter
Filter.instSProd
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
Filter.HasBasis.mem_iff
nhds_basis_closedEBall
IsOpen.mem_nhds
ENNReal.lt_iff_exists_nnreal_btwn
Filter.mp_mem
Filter.prod_mem_prod
eventually_lt_nhds
instClosedIciTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
closedEBall_mem_nhds
tsub_pos_iff_lt
ENNReal.instCanonicallyOrderedAdd
ENNReal.instOrderedSub
Filter.univ_mem'
PseudoEMetricSpace.edist_triangle
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
le_trans
tsub_le_tsub_left
LT.lt.le
Membership.mem.out
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
lt_trans
Filter.eventually_all_finite
LocallyFinite.point_finite
Filter.tendsto_snd
LocallyFinite.iInter_compl_mem_nhds
exists_continuous_ennreal_forall_closedEBall_subset 📖mathematicalIsClosed
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
IsOpen
Set
Set.instHasSubset
LocallyFinite
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
ContinuousMap
ENNReal.instTopologicalSpace
ContinuousMap.instFunLike
closedEBall
exists_continuous_nnreal_forall_closedEBall_subset
ENNReal.continuous_coe
ENNReal.coe_pos
exists_continuous_nnreal_forall_closedBall_subset 📖mathematicalIsClosed
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
IsOpen
Set
Set.instHasSubset
LocallyFinite
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
DFunLike.coe
ContinuousMap
NNReal.instTopologicalSpace
ContinuousMap.instFunLike
closedBall
NNReal.toReal
exists_continuous_nnreal_forall_closedEBall_subset
closedEBall_coe
exists_continuous_nnreal_forall_closedEBall_subset 📖mathematicalIsClosed
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
IsOpen
Set
Set.instHasSubset
LocallyFinite
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
DFunLike.coe
ContinuousMap
NNReal.instTopologicalSpace
ContinuousMap.instFunLike
closedEBall
ENNReal.ofNNReal
exists_continuous_real_forall_closedEBall_subset
CanLift.prf
NNReal.ContinuousMap.canLift
LT.lt.le
exists_continuous_real_forall_closedBall_subset 📖mathematicalIsClosed
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
IsOpen
Set
Set.instHasSubset
LocallyFinite
Real
Real.instLT
Real.instZero
DFunLike.coe
ContinuousMap
Real.pseudoMetricSpace
ContinuousMap.instFunLike
closedBall
exists_continuous_nnreal_forall_closedBall_subset
NNReal.continuous_coe
exists_continuous_real_forall_closedEBall_subset 📖mathematicalIsClosed
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
IsOpen
Set
Set.instHasSubset
LocallyFinite
Real
Real.instLT
Real.instZero
DFunLike.coe
ContinuousMap
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
closedEBall
ENNReal.ofReal
forall_swap
exists_continuous_forall_mem_convex_of_local_const
T4Space.toNormalSpace
T4Space.of_paracompactSpace_t2Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
instParacompactSpace
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
exists_forall_closedEBall_subset_aux₂
exists_forall_closedEBall_subset_aux₁
exists_forall_closedEBall_subset_aux₁ 📖mathematicalIsClosed
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
IsOpen
Set
Set.instHasSubset
LocallyFinite
Filter.Eventually
Real
Set.instMembership
Set.instInter
Set.Ioi
Real.instPreorder
Real.instZero
Set.preimage
ENNReal
ENNReal.ofReal
Set.iInter
setOf
closedEBall
nhds
Filter.Tendsto.eventually
Continuous.tendsto'
ENNReal.continuous_ofReal
ENNReal.ofReal_zero
Filter.Eventually.curry
eventually_nhds_zero_forall_closedEBall_subset
Filter.Eventually.exists_gt
nhdsGT_neBot
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.Eventually.mono
Set.mem_preimage
Set.mem_iInter₂
exists_forall_closedEBall_subset_aux₂ 📖mathematicalConvex
Real
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set
Set.instInter
Set.Ioi
Real.instPreorder
Real.instZero
Set.preimage
ENNReal
ENNReal.ofReal
Set.iInter
Set.instMembership
setOf
Set.instHasSubset
closedEBall
EMetricSpace.toPseudoEMetricSpace
Convex.inter
convex_Ioi
Real.instIsOrderedCancelAddMonoid
IsStrictOrderedModule.toPosSMulStrictMono
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
Set.OrdConnected.convex
Real.instIsOrderedAddMonoid
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
Set.OrdConnected.preimage_ennreal_ofReal
Set.ordConnected_iInter
ordConnected_setOf_closedEBall_subset

---

← Back to Index