📁 Source: Mathlib/Topology/MetricSpace/Perfect.lean
exists_nat_bool_injection_of_not_countable
exists_nat_bool_injection
small_diam_splitting
Set.Countable
Set
Set.instHasSubset
Set.range
Continuous
Pi.topologicalSpace
instTopologicalSpaceBool
exists_perfect_nonempty_of_isClosed_of_not_countable
PolishSpace.toSecondCountableTopology
PolishSpace.toIsCompletelyMetrizableSpace
Perfect.exists_nat_bool_injection
TopologicalSpace.UpgradedIsCompletelyMetrizableSpace.toCompleteSpace
HasSubset.Subset.trans
Set.instIsTransSubset
Perfect
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Set.Nonempty
exists_seq_strictAnti_tendsto'
ENNReal.instOrderTopology
ENNReal.instDenselyOrdered
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
TopologicalSpace.MetrizableSpace.toPseudoMetrizableSpace
ENNReal.instMetrizableSpace
zero_lt_one'
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
NeZero.one
CantorScheme.Antitone.closureAntitone
closed
tendsto_of_tendsto_of_tendsto_of_le_of_le'
tendsto_const_nhds
ENNReal.instCanonicallyOrderedAdd
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.eventually_atTop
PiNat.res_length
Disjoint.symm
CantorScheme.ClosureAntitone.map_of_vanishingDiam
Set.mem_univ
CantorScheme.map_mem
Continuous.comp
CantorScheme.VanishingDiam.map_continuous
instDiscreteTopologyBool
continuous_id'
CantorScheme.Disjoint.map_injective
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Preorder.toLE
Metric.ediam
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
splitting
T3Space.t25Space
T4Space.t3Space
instT4SpaceOfT1SpaceOfNormalSpace
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
CompletelyNormalSpace.toNormalSpace
UniformSpace.completelyNormalSpace_of_isCountablyGenerated_uniformity
EMetric.instIsCountablyGeneratedUniformity
Nat.instAtLeastTwoHAddOfNat
Disjoint.mono
---
← Back to Index