Documentation Verification Report

PiNat

πŸ“ Source: Mathlib/Topology/MetricSpace/PiNat.lean

Statistics

MetricCount
DefinitionsPiNatEmbed, distDenseSeq, embed, emetricSpace, instPseudoEMetricSpace, instPseudoMetricSpace, metricSpace, ofPiNat, toPiNatEquiv, toPiNatHomeo, dist, edist, emetricSpace, metricSpace, pseudoEMetricSpace, pseudoMetricSpace, cylinder, dist, firstDiff, longestPrefix, metricSpace, metricSpaceNatNat, metricSpaceOfDiscreteUniformity, res, shortestPrefixDiff
25
Theoremsof_countable_separating, continuous_distDenseSeq, continuous_distDenseSeq_inv, continuous_toPiNat, dist_def, edist_def, embed_injective, exists_closed_embedding_to_hilbert_cube, exists_embedding_to_hilbert_cube, ext, ext_iff, forall, injective_distDenseSeq, isHomeomorph_toPiNat, isUniformEmbedding_embed, isometry_embed, ofPiNat_inj, separation, toPiNatEquiv_apply_ofPiNat, toPiNatEquiv_symm_apply, toPiNatHomeo_apply_ofPiNat, toPiNatHomeo_symm_apply, dist_eq_tsum, dist_le_dist_pi_of_dist_lt, dist_summable, edist_eq_tsum, edist_le_edist_pi_of_edist_lt, edist_le_two, edist_lt_top, min_dist_le_dist_pi, min_edist_le_edist_pi, apply_eq_of_dist_lt, apply_eq_of_lt_firstDiff, apply_firstDiff_ne, boundedSpace, completeSpace, cylinder_anti, cylinder_eq_cylinder_of_le_firstDiff, cylinder_eq_pi, cylinder_eq_res, cylinder_longestPrefix_eq_of_longestPrefix_lt_firstDiff, cylinder_zero, disjoint_cylinder_of_longestPrefix_lt, dist_comm, dist_eq_of_ne, dist_le_one, dist_nonneg, dist_self, dist_triangle, dist_triangle_nonarch, eq_of_dist_eq_zero, exists_disjoint_cylinder, exists_lipschitz_retraction_of_isClosed, exists_retraction_of_isClosed, exists_retraction_subtype_of_isClosed, firstDiff_comm, firstDiff_def, firstDiff_le_longestPrefix, firstDiff_lt_shortestPrefixDiff, iUnion_cylinder_update, inter_cylinder_longestPrefix_nonempty, isOpen_cylinder, isOpen_iff_dist, isTopologicalBasis_cylinders, lipschitz_with_one_iff_forall_dist_image_le_of_mem_cylinder, mem_cylinder_comm, mem_cylinder_firstDiff, mem_cylinder_iff, mem_cylinder_iff_dist_le, mem_cylinder_iff_eq, mem_cylinder_iff_le_firstDiff, min_firstDiff_le, res_eq_res, res_injective, res_length, res_succ, res_zero, self_mem_cylinder, shortestPrefixDiff_pos, update_mem_cylinder, exists_nat_nat_continuous_surjective_of_completeSpace
81
Total106

Metric

Definitions

NameCategoryTheorems
PiNatEmbed πŸ“–CompData
12 mathmath: PiNatEmbed.continuous_distDenseSeq_inv, PiNatEmbed.toPiNatEquiv_apply_ofPiNat, PiNatEmbed.edist_def, PiNatEmbed.continuous_toPiNat, PiNatEmbed.dist_def, PiNatEmbed.isHomeomorph_toPiNat, PiNatEmbed.embed_injective, PiNatEmbed.toPiNatHomeo_apply_ofPiNat, PiNatEmbed.toPiNatHomeo_symm_apply, PiNatEmbed.isUniformEmbedding_embed, PiNatEmbed.toPiNatEquiv_symm_apply, PiNatEmbed.isometry_embed

Metric.PiNatEmbed

Definitions

NameCategoryTheorems
distDenseSeq πŸ“–CompOp
3 mathmath: continuous_distDenseSeq_inv, separation, continuous_distDenseSeq
embed πŸ“–CompOp
3 mathmath: embed_injective, isUniformEmbedding_embed, isometry_embed
emetricSpace πŸ“–CompOpβ€”
instPseudoEMetricSpace πŸ“–CompOp
3 mathmath: edist_def, isUniformEmbedding_embed, isometry_embed
instPseudoMetricSpace πŸ“–CompOp
6 mathmath: continuous_distDenseSeq_inv, continuous_toPiNat, dist_def, isHomeomorph_toPiNat, toPiNatHomeo_apply_ofPiNat, toPiNatHomeo_symm_apply
metricSpace πŸ“–CompOpβ€”
ofPiNat πŸ“–CompOp
9 mathmath: continuous_distDenseSeq_inv, ofPiNat_inj, toPiNatEquiv_apply_ofPiNat, edist_def, dist_def, ext_iff, toPiNatHomeo_apply_ofPiNat, toPiNatHomeo_symm_apply, toPiNatEquiv_symm_apply
toPiNatEquiv πŸ“–CompOp
2 mathmath: toPiNatEquiv_apply_ofPiNat, toPiNatEquiv_symm_apply
toPiNatHomeo πŸ“–CompOp
2 mathmath: toPiNatHomeo_apply_ofPiNat, toPiNatHomeo_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_distDenseSeq πŸ“–mathematicalβ€”Continuous
Set.Elem
Real
unitInterval
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instTopologicalSpaceSubtype
Set
Set.instMembership
Real.pseudoMetricSpace
distDenseSeq
β€”isEmpty_or_nonempty
continuous_of_discreteTopology
Finite.instDiscreteTopology
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Finite.of_subsingleton
IsEmpty.instSubsingleton
Continuous.comp
continuous_projIcc
instOrderTopologyReal
Continuous.dist
continuous_id'
continuous_const
continuous_distDenseSeq_inv πŸ“–mathematicalβ€”Continuous
Metric.PiNatEmbed
Set.Elem
Real
unitInterval
distDenseSeq
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpace
Nat.encodable
Subtype.pseudoMetricSpace
Real.pseudoMetricSpace
Set
Set.instMembership
MetricSpace.toPseudoMetricSpace
ofPiNat
β€”continuous_iff_continuousAt
separation
Topology.IsInducing.nhds_eq_comap
Topology.IsEmbedding.toIsInducing
IsUniformEmbedding.isEmbedding
isUniformEmbedding_embed
injective_distDenseSeq
nhds_pi
Filter.mem_pi_of_mem
continuous_toPiNat πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Metric.PiNatEmbed
instPseudoMetricSpace
toPiNat
β€”continuous_iff_continuous_dist
continuous_tsum
Real.instCompleteSpace
Nat.instAtLeastTwoHAddOfNat
Continuous.min
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
continuous_const
Continuous.dist
Continuous.comp'
Continuous.fst
continuous_id'
Continuous.snd
summable_geometric_two_encode
inv_pow
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
one_div
dist_def πŸ“–mathematicalβ€”Dist.dist
Metric.PiNatEmbed
PseudoMetricSpace.toDist
instPseudoMetricSpace
tsum
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMin
Monoid.toNatPow
Real.instMonoid
Real.instInv
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Encodable.encode
ofPiNat
SummationFilter.unconditional
β€”β€”
edist_def πŸ“–mathematicalβ€”EDist.edist
Metric.PiNatEmbed
PseudoEMetricSpace.toEDist
instPseudoEMetricSpace
tsum
ENNReal
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
ENNReal.instMin
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instInv
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
Encodable.encode
ofPiNat
SummationFilter.unconditional
β€”β€”
embed_injective πŸ“–mathematicalPairwiseMetric.PiNatEmbed
embed
β€”not_imp_comm
exists_closed_embedding_to_hilbert_cube πŸ“–mathematicalβ€”Topology.IsEmbedding
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Pi.topologicalSpace
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
Real.pseudoMetricSpace
β€”exists_embedding_to_hilbert_cube
exists_embedding_to_hilbert_cube πŸ“–mathematicalβ€”Topology.IsEmbedding
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Pi.topologicalSpace
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
Real.pseudoMetricSpace
β€”continuous_toPiNat
continuous_distDenseSeq
continuous_distDenseSeq_inv
IsUniformEmbedding.isEmbedding
isUniformEmbedding_embed
injective_distDenseSeq
Topology.IsEmbedding.comp
Homeomorph.isEmbedding
ext πŸ“–β€”ofPiNatβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”ofPiNatβ€”ext
forall πŸ“–mathematicalβ€”toPiNatβ€”Equiv.forall_congr_left
injective_distDenseSeq πŸ“–β€”β€”β€”β€”separation
IsOpen.mem_nhds
isOpen_compl_singleton
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
isHomeomorph_toPiNat πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Pairwise
IsHomeomorph
Metric.PiNatEmbed
instPseudoMetricSpace
toPiNat
β€”isHomeomorph_iff_continuous_bijective
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
continuous_toPiNat
Equiv.bijective
isUniformEmbedding_embed πŸ“–mathematicalPairwiseIsUniformEmbedding
Metric.PiNatEmbed
PseudoEMetricSpace.toUniformSpace
instPseudoEMetricSpace
EMetricSpace.toPseudoEMetricSpace
Pi.uniformSpace
embed
β€”Isometry.isUniformEmbedding
isometry_embed
isometry_embed πŸ“–mathematicalβ€”Isometry
Metric.PiNatEmbed
instPseudoEMetricSpace
PiCountable.pseudoEMetricSpace
embed
β€”PseudoEMetricSpace.isometry_induced
ofPiNat_inj πŸ“–mathematicalβ€”ofPiNatβ€”Equiv.injective
separation πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Filter.comap
Set.Elem
Real
unitInterval
distDenseSeq
instTopologicalSpaceSubtype
Set.instMembership
Real.pseudoMetricSpace
β€”Set.eq_empty_or_nonempty
closure_compl
Nat.instAtLeastTwoHAddOfNat
Metric.denseRange_iff
TopologicalSpace.denseRange_denseSeq
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
NeZero.one
Real.instNontrivial
Real.instIsOrderedRing
IsOpen.mem_nhds
Metric.isOpen_ball
sup_of_le_right
dist_zero_right
abs_eq_self
Real.instIsOrderedAddMonoid
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
one_mul
IsOrderedAddMonoid.toAddLeftMono
IsStrictOrderedRing.toCharZero
LT.lt.trans_le
LE.le.trans_lt
dist_triangle_right
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
add_halves
CharZero.NeZero.two
notMem_of_notMem_closure
Metric.infDist_le_dist_of_mem
LT.lt.not_ge
toPiNatEquiv_apply_ofPiNat πŸ“–mathematicalβ€”ofPiNat
DFunLike.coe
Equiv
Metric.PiNatEmbed
EquivLike.toFunLike
Equiv.instEquivLike
toPiNatEquiv
β€”β€”
toPiNatEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Metric.PiNatEmbed
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toPiNatEquiv
ofPiNat
β€”β€”
toPiNatHomeo_apply_ofPiNat πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Pairwise
ofPiNat
DFunLike.coe
Homeomorph
Metric.PiNatEmbed
instPseudoMetricSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
toPiNatHomeo
β€”β€”
toPiNatHomeo_symm_apply πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Pairwise
DFunLike.coe
Homeomorph
Metric.PiNatEmbed
instPseudoMetricSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
toPiNatHomeo
ofPiNat
β€”β€”

Metric.PiNatEmbed.TopologicalSpace.MetrizableSpace

Theorems

NameKindAssumesProvesValidatesDepends On
of_countable_separating πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Pairwise
TopologicalSpace.MetrizableSpaceβ€”Topology.IsEmbedding.metrizableSpace
EMetricSpace.metrizableSpace
Homeomorph.isEmbedding

PiCountable

Definitions

NameCategoryTheorems
dist πŸ“–CompOp
2 mathmath: min_dist_le_dist_pi, dist_eq_tsum
edist πŸ“–CompOp
4 mathmath: min_edist_le_edist_pi, edist_eq_tsum, edist_le_two, edist_lt_top
emetricSpace πŸ“–CompOpβ€”
metricSpace πŸ“–CompOpβ€”
pseudoEMetricSpace πŸ“–CompOp
1 mathmath: Metric.PiNatEmbed.isometry_embed
pseudoMetricSpace πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
dist_eq_tsum πŸ“–mathematicalβ€”Dist.dist
dist
tsum
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMin
Monoid.toNatPow
Real.instMonoid
Real.instInv
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Encodable.encode
PseudoMetricSpace.toDist
SummationFilter.unconditional
β€”β€”
dist_le_dist_pi_of_dist_lt πŸ“–mathematicalReal
Real.instLT
Dist.dist
dist
Monoid.toNatPow
Real.instMonoid
Real.instInv
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Encodable.encode
Real.instLE
PseudoMetricSpace.toDist
β€”Nat.instAtLeastTwoHAddOfNat
not_le
min_le_iff
min_dist_le_dist_pi
dist_summable πŸ“–mathematicalβ€”Summable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMin
Monoid.toNatPow
Real.instMonoid
Real.instInv
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Encodable.encode
Dist.dist
PseudoMetricSpace.toDist
SummationFilter.unconditional
β€”Summable.of_nonneg_of_le
Nat.instAtLeastTwoHAddOfNat
le_min
le_of_lt
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
dist_nonneg
min_le_left
inv_pow
one_div
summable_geometric_two_encode
edist_eq_tsum πŸ“–mathematicalβ€”EDist.edist
edist
tsum
ENNReal
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
ENNReal.instMin
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instInv
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
Encodable.encode
SummationFilter.unconditional
β€”β€”
edist_le_edist_pi_of_edist_lt πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
edist
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instInv
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
Encodable.encode
Preorder.toLEβ€”Nat.instAtLeastTwoHAddOfNat
not_le
min_le_iff
min_edist_le_edist_pi
edist_le_two πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
edist
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
β€”LE.le.trans'
Nat.instAtLeastTwoHAddOfNat
ENNReal.tsum_geometric_two_encode_le_two
edist_eq_tsum
Summable.tsum_le_tsum
ENNReal.instIsOrderedAddMonoid
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
SummationFilter.instNeBotUnconditional
min_le_left
ENNReal.summable
edist_lt_top πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
edist
Top.top
instTopENNReal
β€”LE.le.trans_lt
Nat.instAtLeastTwoHAddOfNat
edist_le_two
min_dist_le_dist_pi πŸ“–mathematicalβ€”Real
Real.instLE
Real.instMin
Monoid.toNatPow
Real.instMonoid
Real.instInv
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Encodable.encode
Dist.dist
PseudoMetricSpace.toDist
dist
β€”Summable.le_tsum
Real.instIsOrderedAddMonoid
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Nat.instAtLeastTwoHAddOfNat
SummationFilter.instNeBotUnconditional
SummationFilter.instLeAtTopUnconditional
dist_summable
le_min
inv_pow
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
dist_nonneg
min_edist_le_edist_pi πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.instMin
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instInv
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
Encodable.encode
EDist.edist
edist
β€”ENNReal.le_tsum

PiNat

Definitions

NameCategoryTheorems
cylinder πŸ“–CompOp
20 mathmath: cylinder_eq_cylinder_of_le_firstDiff, update_mem_cylinder, cylinder_eq_res, isTopologicalBasis_cylinders, iUnion_cylinder_update, cylinder_zero, mem_cylinder_iff_dist_le, inter_cylinder_longestPrefix_nonempty, isOpen_cylinder, cylinder_longestPrefix_eq_of_longestPrefix_lt_firstDiff, cylinder_eq_pi, mem_cylinder_firstDiff, mem_cylinder_iff_le_firstDiff, self_mem_cylinder, mem_cylinder_comm, mem_cylinder_iff_eq, mem_cylinder_iff, disjoint_cylinder_of_longestPrefix_lt, cylinder_anti, exists_disjoint_cylinder
dist πŸ“–CompOp
9 mathmath: dist_triangle_nonarch, dist_triangle, lipschitz_with_one_iff_forall_dist_image_le_of_mem_cylinder, mem_cylinder_iff_dist_le, dist_eq_of_ne, dist_nonneg, dist_self, dist_le_one, dist_comm
firstDiff πŸ“–CompOp
8 mathmath: firstDiff_def, firstDiff_le_longestPrefix, dist_eq_of_ne, firstDiff_comm, mem_cylinder_firstDiff, firstDiff_lt_shortestPrefixDiff, mem_cylinder_iff_le_firstDiff, min_firstDiff_le
longestPrefix πŸ“–CompOp
2 mathmath: inter_cylinder_longestPrefix_nonempty, firstDiff_le_longestPrefix
metricSpace πŸ“–CompOp
3 mathmath: boundedSpace, exists_lipschitz_retraction_of_isClosed, completeSpace
metricSpaceNatNat πŸ“–CompOpβ€”
metricSpaceOfDiscreteUniformity πŸ“–CompOpβ€”
res πŸ“–CompOp
7 mathmath: cylinder_eq_res, res_zero, CantorScheme.map_mem, res_injective, res_length, res_succ, res_eq_res
shortestPrefixDiff πŸ“–CompOp
2 mathmath: firstDiff_lt_shortestPrefixDiff, shortestPrefixDiff_pos

Theorems

NameKindAssumesProvesValidatesDepends On
apply_eq_of_dist_lt πŸ“–β€”Real
Real.instLT
Dist.dist
dist
Monoid.toNatPow
Real.instMonoid
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”β€”Nat.instAtLeastTwoHAddOfNat
eq_or_ne
dist_eq_of_ne
one_div
inv_pow
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instZeroLEOneClass
Real.instIsOrderedRing
Real.instNontrivial
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsStrictOrderedRing.toCharZero
apply_eq_of_lt_firstDiff
LE.le.trans_lt
apply_eq_of_lt_firstDiff πŸ“–β€”firstDiffβ€”β€”Nat.find_min
Function.ne_iff
firstDiff_def
not_lt_zero'
apply_firstDiff_ne πŸ“–β€”β€”β€”β€”firstDiff_def
Nat.find_spec
Function.ne_iff
boundedSpace πŸ“–mathematicalDiscreteTopologyBoundedSpace
PseudoMetricSpace.toBornology
MetricSpace.toPseudoMetricSpace
metricSpace
β€”Metric.boundedSpace_iff
dist_le_one
completeSpace πŸ“–mathematicalDiscreteTopologyCompleteSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
metricSpace
β€”Metric.complete_of_convergent_controlled_sequences
Nat.instAtLeastTwoHAddOfNat
one_div
inv_pow
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
Real.instIsOrderedRing
Real.instNontrivial
tendsto_pi_nhds
Filter.Tendsto.congr'
Filter.mp_mem
Filter.Ici_mem_atTop
Filter.univ_mem'
apply_eq_of_dist_lt
le_rfl
tendsto_const_nhds
cylinder_anti πŸ“–mathematicalβ€”Set
Set.instHasSubset
cylinder
β€”LT.lt.trans_le
cylinder_eq_cylinder_of_le_firstDiff πŸ“–mathematicalfirstDiffcylinderβ€”mem_cylinder_iff_eq
apply_eq_of_lt_firstDiff
LT.lt.trans_le
cylinder_eq_pi πŸ“–mathematicalβ€”cylinder
Set.pi
SetLike.coe
Finset
Finset.instSetLike
Finset.range
Set
Set.instSingletonSet
β€”Set.ext
Finset.coe_range
cylinder_eq_res πŸ“–mathematicalβ€”cylinder
setOf
res
β€”Set.ext
res_eq_res
cylinder_longestPrefix_eq_of_longestPrefix_lt_firstDiff πŸ“–mathematicalDiscreteTopology
Set.Nonempty
longestPrefix
firstDiff
Set
Set.instMembership
cylinderβ€”lt_trichotomy
inter_cylinder_longestPrefix_nonempty
disjoint_cylinder_of_longestPrefix_lt
Set.Nonempty.not_disjoint
cylinder_eq_cylinder_of_le_firstDiff
LT.lt.le
firstDiff_comm
Set.Nonempty.mono
Set.inter_subset_inter_right
cylinder_anti
mem_cylinder_iff_eq
mem_cylinder_firstDiff
cylinder_zero πŸ“–mathematicalβ€”cylinder
Set.univ
β€”cylinder_eq_pi
Finset.coe_empty
Set.empty_pi
disjoint_cylinder_of_longestPrefix_lt πŸ“–mathematicalDiscreteTopology
Set
Set.instMembership
longestPrefix
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
cylinder
β€”Mathlib.Tactic.Contrapose.contrapose₁
Set.not_disjoint_iff_nonempty_inter
le_trans
mem_cylinder_iff_le_firstDiff
mem_cylinder_comm
firstDiff_le_longestPrefix
dist_comm πŸ“–mathematicalβ€”Dist.dist
dist
β€”one_div
inv_pow
firstDiff_comm
dist_eq_of_ne πŸ“–mathematicalβ€”Dist.dist
dist
Real
Monoid.toNatPow
Real.instMonoid
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
firstDiff
β€”Nat.instAtLeastTwoHAddOfNat
one_div
inv_pow
dist_le_one πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
dist
Real.instOne
β€”eq_or_ne
Real.instZeroLEOneClass
one_div
inv_pow
inv_le_one_of_one_leβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
one_le_powβ‚€
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_le_true
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.instAtLeastTwo
dist_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
Dist.dist
dist
β€”eq_or_ne
one_div
inv_pow
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
dist_self πŸ“–mathematicalβ€”Dist.dist
dist
Real
Real.instZero
β€”β€”
dist_triangle πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
dist
Real.instAdd
β€”dist_triangle_nonarch
max_le_add_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
dist_nonneg
dist_triangle_nonarch πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
dist
Real.instMax
β€”eq_or_ne
dist_self
Nat.instAtLeastTwoHAddOfNat
dist_eq_of_ne
one_div
inv_pow
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instZeroLEOneClass
NeZero.one
Real.instNontrivial
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
min_le_iff
min_firstDiff_le
eq_of_dist_eq_zero πŸ“–β€”Dist.dist
dist
Real
Real.instZero
β€”β€”eq_or_ne
Nat.instAtLeastTwoHAddOfNat
dist_eq_of_ne
one_div
inv_pow
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Real.instNontrivial
IsStrictOrderedRing.toCharZero
exists_disjoint_cylinder πŸ“–mathematicalDiscreteTopology
Set
Set.instMembership
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
cylinder
β€”Set.eq_empty_or_nonempty
cylinder_zero
IsClosed.notMem_iff_infDist_pos
Nat.instAtLeastTwoHAddOfNat
exists_pow_lt_of_lt_one
Real.instIsStrictOrderedRing
Real.instArchimedean
AddGroup.existsAddOfLE
one_half_lt_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Set.disjoint_left
lt_irrefl
Metric.infDist_le_dist_of_mem
mem_cylinder_iff_dist_le
mem_cylinder_comm
exists_lipschitz_retraction_of_isClosed πŸ“–mathematicalDiscreteTopology
Set.Nonempty
Set.range
LipschitzWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
metricSpace
NNReal
instOneNNReal
β€”inter_cylinder_longestPrefix_nonempty
Set.Subset.antisymm
Set.mem_range_self
LipschitzWith.mk_one
eq_or_ne
dist_self
mem_cylinder_iff_eq
mem_cylinder_firstDiff
le_refl
firstDiff_comm
cylinder_anti
firstDiff_le_longestPrefix
Set.Nonempty.some_mem
mem_cylinder_iff_le_firstDiff
cylinder_longestPrefix_eq_of_longestPrefix_lt_firstDiff
Nat.instAtLeastTwoHAddOfNat
dist_eq_of_ne
one_div
inv_pow
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instZeroLEOneClass
Real.instIsOrderedRing
Real.instNontrivial
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsStrictOrderedRing.toCharZero
exists_retraction_of_isClosed πŸ“–mathematicalDiscreteTopology
Set.Nonempty
Set.range
Continuous
Pi.topologicalSpace
β€”exists_lipschitz_retraction_of_isClosed
LipschitzWith.continuous
exists_retraction_subtype_of_isClosed πŸ“–mathematicalDiscreteTopology
Set.Nonempty
Set
Set.instMembership
Set.Elem
Continuous
Pi.topologicalSpace
instTopologicalSpaceSubtype
β€”exists_retraction_of_isClosed
Set.mem_range_self
firstDiff_comm πŸ“–mathematicalβ€”firstDiffβ€”firstDiff_def
Nat.find.congr_simp
firstDiff_def πŸ“–mathematicalβ€”firstDiff
Nat.find
β€”β€”
firstDiff_le_longestPrefix πŸ“–mathematicalDiscreteTopology
Set
Set.instMembership
firstDiff
longestPrefix
β€”longestPrefix.eq_1
le_tsub_iff_right
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
shortestPrefixDiff_pos
firstDiff_lt_shortestPrefixDiff
firstDiff_lt_shortestPrefixDiff πŸ“–mathematicalDiscreteTopology
Set
Set.instMembership
firstDiff
shortestPrefixDiff
β€”exists_disjoint_cylinder
shortestPrefixDiff.eq_1
Nat.find_spec
Mathlib.Tactic.Contrapose.contrapose₁
Set.not_disjoint_iff_nonempty_inter
mem_cylinder_comm
cylinder_anti
mem_cylinder_firstDiff
iUnion_cylinder_update πŸ“–mathematicalβ€”Set.iUnion
cylinder
Function.update
β€”Set.ext
Function.update_of_ne
LT.lt.ne
Function.update_self
inter_cylinder_longestPrefix_nonempty πŸ“–mathematicalDiscreteTopology
Set.Nonempty
Set
Set.instInter
cylinder
longestPrefix
β€”self_mem_cylinder
exists_disjoint_cylinder
LT.lt.ne'
shortestPrefixDiff_pos
longestPrefix.eq_1
shortestPrefixDiff.eq_1
Nat.find_min
mem_cylinder_iff_eq
isOpen_cylinder πŸ“–mathematicalDiscreteTopologyIsOpen
Pi.topologicalSpace
cylinder
β€”cylinder_eq_pi
isOpen_set_pi
Finset.finite_toSet
isOpen_discrete
isOpen_iff_dist πŸ“–mathematicalDiscreteTopologyIsOpen
Pi.topologicalSpace
Real
Real.instLT
Real.instZero
Set
Set.instMembership
β€”TopologicalSpace.IsTopologicalBasis.exists_subset_of_mem_open
isTopologicalBasis_cylinders
Nat.instAtLeastTwoHAddOfNat
one_div
inv_pow
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
Real.instIsOrderedRing
Real.instNontrivial
mem_cylinder_iff_eq
apply_eq_of_dist_lt
LT.lt.le
TopologicalSpace.IsTopologicalBasis.isOpen_iff
exists_pow_lt_of_lt_one
Real.instArchimedean
AddGroup.existsAddOfLE
one_half_lt_one
self_mem_cylinder
dist_comm
LE.le.trans_lt
mem_cylinder_iff_dist_le
isTopologicalBasis_cylinders πŸ“–mathematicalDiscreteTopologyTopologicalSpace.IsTopologicalBasis
Pi.topologicalSpace
setOf
Set
cylinder
β€”TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
isOpen_cylinder
TopologicalSpace.IsTopologicalBasis.exists_subset_of_mem_open
isTopologicalBasis_pi
TopologicalSpace.isTopologicalBasis_opens
Finset.bddAbove
self_mem_cylinder
Set.Subset.trans
mem_cylinder_iff
LE.le.trans_lt
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
lipschitz_with_one_iff_forall_dist_image_le_of_mem_cylinder πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
dist
Monoid.toNatPow
Real.instMonoid
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
LE.le.trans
dist_comm
mem_cylinder_iff_dist_le
eq_or_ne
dist_self
dist_eq_of_ne
firstDiff_comm
mem_cylinder_firstDiff
mem_cylinder_comm πŸ“–mathematicalβ€”Set
Set.instMembership
cylinder
β€”β€”
mem_cylinder_firstDiff πŸ“–mathematicalβ€”Set
Set.instMembership
cylinder
firstDiff
β€”apply_eq_of_lt_firstDiff
mem_cylinder_iff πŸ“–mathematicalβ€”Set
Set.instMembership
cylinder
β€”β€”
mem_cylinder_iff_dist_le πŸ“–mathematicalβ€”Set
Set.instMembership
cylinder
Real
Real.instLE
Dist.dist
dist
Monoid.toNatPow
Real.instMonoid
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
eq_or_ne
dist_self
one_div
inv_pow
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
apply_firstDiff_ne
apply_eq_of_lt_firstDiff
LT.lt.trans_le
dist_eq_of_ne
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instNontrivial
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsStrictOrderedRing.toCharZero
mem_cylinder_iff_eq πŸ“–mathematicalβ€”Set
Set.instMembership
cylinder
β€”Set.Subset.antisymm
self_mem_cylinder
mem_cylinder_iff_le_firstDiff πŸ“–mathematicalβ€”Set
Set.instMembership
cylinder
firstDiff
β€”apply_firstDiff_ne
apply_eq_of_lt_firstDiff
LT.lt.trans_le
min_firstDiff_le πŸ“–mathematicalβ€”firstDiffβ€”apply_firstDiff_ne
apply_eq_of_lt_firstDiff
lt_min_iff
res_eq_res πŸ“–mathematicalβ€”resβ€”Nat.instCanonicallyOrderedAdd
instIsEmptyFalse
LT.lt.trans
res_injective πŸ“–mathematicalβ€”resβ€”res_eq_res
res_length πŸ“–mathematicalβ€”resβ€”β€”
res_succ πŸ“–mathematicalβ€”resβ€”β€”
res_zero πŸ“–mathematicalβ€”resβ€”β€”
self_mem_cylinder πŸ“–mathematicalβ€”Set
Set.instMembership
cylinder
β€”β€”
shortestPrefixDiff_pos πŸ“–mathematicalDiscreteTopology
Set.Nonempty
Set
Set.instMembership
shortestPrefixDiffβ€”LE.le.trans_lt
zero_le
Nat.instCanonicallyOrderedAdd
firstDiff_lt_shortestPrefixDiff
update_mem_cylinder πŸ“–mathematicalβ€”Set
Set.instMembership
cylinder
Function.update
β€”mem_cylinder_iff
Function.update_of_ne
LT.lt.ne

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_nat_nat_continuous_surjective_of_completeSpace πŸ“–mathematicalβ€”Continuous
Pi.topologicalSpace
instTopologicalSpaceNat
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
β€”Nat.instAtLeastTwoHAddOfNat
one_div
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.instAtLeastTwo
TopologicalSpace.exists_dense_seq
TopologicalSpace.SecondCountableTopology.to_separableSpace
Set.mem_iInter
Set.Nonempty.some_mem
continuous_iff_continuousAt
continuousAt_of_locally_lipschitz
zero_lt_one
Real.instZeroLEOneClass
NeZero.one
eq_or_ne
dist_self
MulZeroClass.mul_zero
Subtype.coe_injective
PiNat.apply_firstDiff_ne
PiNat.apply_eq_of_dist_lt
pow_zero
le_rfl
PiNat.dist_eq_of_ne
PiNat.mem_cylinder_firstDiff
LT.lt.ne'
dist_triangle_right
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
DenseRange.exists_dist_lt
inv_pow
LT.lt.le
dist_le_zero
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
tendsto_pow_atTop_nhds_zero_of_lt_one
AddGroup.existsAddOfLE
Real.instArchimedean
instOrderTopologyReal
ge_of_tendsto'
instClosedIciTopology
OrderTopology.to_orderClosedTopology
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
add_zero
isClosed_iff_clusterPt
Filter.Tendsto.const_mul
IsTopologicalSemiring.toContinuousMul
squeeze_zero
Metric.diam_nonneg
Metric.diam_closedBall
pow_nonneg
IsOrderedRing.toPosMulMono
Metric.nonempty_iInter_of_nonempty_biInter
Metric.isClosed_closedBall
Metric.isBounded_closedBall
clusterPt_principal_iff
Metric.ball_mem_nhds
pow_pos
Set.iInter_congr
Metric.mem_ball'
Set.Nonempty.mono
Set.iInter_subset_iInterβ‚‚
PiNat.exists_retraction_subtype_of_isClosed
instDiscreteTopologyNat
Function.Surjective.nonempty
Continuous.comp

---

← Back to Index