Documentation Verification Report

Polish

📁 Source: Mathlib/Topology/MetricSpace/Polish.lean

Statistics

MetricCount
DefinitionsPolishSpace, IsClopenable, CompleteCopy, inst, instDist, instMetricSpace
6
TheoremsiInf, polishSpace_induced, isClopenable, polishSpace, isClopenable, polishSpace, compl, iUnion, exists_nat_nat_continuous_surjective, exists_polishSpace_forall_le, iInf, instENNReal, toIsCompletelyMetrizableSpace, toSecondCountableTopology, dist_eq, dist_val_le_dist, instCompleteSpace, instSecondCountableTopology, instT0Space, polishSpace, instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
21
Total27

CompletePseudometrizable

Theorems

NameKindAssumesProvesValidatesDepends On
iInf 📖mathematicalT2Space
TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
CompleteSpace
Filter.IsCountablyGenerated
uniformity
UniformSpace.toTopologicalSpace
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
CompleteSpace.iInf
iInf_uniformity
Filter.iInf.isCountablyGenerated
UniformSpace.toTopologicalSpace_iInf

Equiv

Theorems

NameKindAssumesProvesValidatesDepends On
polishSpace_induced 📖mathematicalPolishSpace
TopologicalSpace.induced
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
Topology.IsClosedEmbedding.polishSpace
Homeomorph.isClosedEmbedding

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
isClopenable 📖mathematicalPolishSpace.IsClopenablecoinduced_sup
coinduced_compose
continuous_subtype_val
Equiv.induced_symm
Equiv.polishSpace_induced
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.instSeparableSpaceSum
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.Subtype.secondCountableTopology
PolishSpace.toSecondCountableTopology
TopologicalSpace.IsCompletelyMetrizableSpace.sum
PolishSpace.toIsCompletelyMetrizableSpace
polishSpace
IsOpen.polishSpace
isOpen_compl
mono
isOpen_coinduced
isOpen_sum_iff
Set.preimage_preimage
Equiv.Set.sumCompl_apply_inl
Equiv.Set.sumCompl_apply_inr
Subtype.coe_preimage_self
Subtype.preimage_coe_compl'
polishSpace 📖mathematicalPolishSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Topology.IsClosedEmbedding.polishSpace
isClosedEmbedding_subtypeVal

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
isClopenable 📖mathematicalIsOpenPolishSpace.IsClopenablecompl_compl
PolishSpace.IsClopenable.compl
IsClosed.isClopenable
isClosed_compl
polishSpace 📖mathematicalIsOpenPolishSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
CanLift.prf
TopologicalSpace.Opens.instCanLiftSetCoeIsOpen
PolishSpace.toIsCompletelyMetrizableSpace
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.Opens.CompleteCopy.instSecondCountableTopology
PolishSpace.toSecondCountableTopology
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
TopologicalSpace.Opens.CompleteCopy.instCompleteSpace
TopologicalSpace.UpgradedIsCompletelyMetrizableSpace.toCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
TopologicalSpace.Opens.CompleteCopy.instT0Space

PolishSpace

Definitions

NameCategoryTheorems
IsClopenable 📖MathDef
4 mathmath: IsOpen.isClopenable, MeasurableSet.isClopenable, IsClosed.isClopenable, MeasureTheory.isClopenable_iff_measurableSet

Theorems

NameKindAssumesProvesValidatesDepends On
exists_nat_nat_continuous_surjective 📖mathematicalContinuous
Pi.topologicalSpace
instTopologicalSpaceNat
exists_nat_nat_continuous_surjective_of_completeSpace
toIsCompletelyMetrizableSpace
TopologicalSpace.UpgradedIsCompletelyMetrizableSpace.toCompleteSpace
toSecondCountableTopology
exists_polishSpace_forall_le 📖TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
PolishSpace
iInf_le
iInf
Option.instCountable
le_rfl
iInf 📖mathematicalTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
PolishSpace
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
CompletePseudometrizable.iInf
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.IsCompletelyMetrizableSpace.MetrizableSpace
toIsCompletelyMetrizableSpace
TopologicalSpace.UpgradedIsCompletelyMetrizableSpace.toCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
TopologicalSpace.secondCountableTopology_iInf
toSecondCountableTopology
t1Space_antitone
iInf_le
T2Space.t1Space
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
T3Space.toT0Space
T4Space.t3Space
instT4SpaceOfT1SpaceOfNormalSpace
CompletelyNormalSpace.toNormalSpace
UniformSpace.completelyNormalSpace_of_isCountablyGenerated_uniformity
instENNReal 📖mathematicalPolishSpace
ENNReal
ENNReal.instTopologicalSpace
Topology.IsClosedEmbedding.polishSpace
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.Subtype.secondCountableTopology
instSecondCountableTopologyReal
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
complete_of_proper
proper_of_compact
compactSpace_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
instIsCountablyGeneratedProdElemUniformity
EMetric.instIsCountablyGeneratedUniformity
Subtype.t0Space
T3Space.toT0Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
ENNReal.instOrderTopology
orderTopology_of_ordConnected
Set.ordConnected_Icc
Homeomorph.isClosedEmbedding
toIsCompletelyMetrizableSpace 📖mathematicalTopologicalSpace.IsCompletelyMetrizableSpace
toSecondCountableTopology 📖mathematicalSecondCountableTopology

PolishSpace.IsClopenable

Theorems

NameKindAssumesProvesValidatesDepends On
compl 📖mathematicalPolishSpace.IsClopenableCompl.compl
Set
Set.instCompl
IsOpen.isClosed_compl
IsClosed.isOpen_compl
iUnion 📖mathematicalPolishSpace.IsClopenableSet.iUnionPolishSpace.exists_polishSpace_forall_le
instCountableNat
isOpen_iUnion
IsOpen.isClopenable
LE.le.trans

TopologicalSpace.Opens

Definitions

NameCategoryTheorems
CompleteCopy 📖CompOp
5 mathmath: CompleteCopy.dist_eq, CompleteCopy.instCompleteSpace, CompleteCopy.dist_val_le_dist, CompleteCopy.instT0Space, CompleteCopy.instSecondCountableTopology

TopologicalSpace.Opens.CompleteCopy

Definitions

NameCategoryTheorems
inst 📖CompOp
2 mathmath: instT0Space, instSecondCountableTopology
instDist 📖CompOp
2 mathmath: dist_eq, dist_val_le_dist
instMetricSpace 📖CompOp
1 mathmath: instCompleteSpace

Theorems

NameKindAssumesProvesValidatesDepends On
dist_eq 📖mathematicalDist.dist
TopologicalSpace.Opens.CompleteCopy
instDist
Real
Real.instAdd
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
TopologicalSpace.Opens
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
abs
Real.lattice
Real.instAddGroup
Real.instSub
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Metric.infDist
Compl.compl
Set
Set.instCompl
SetLike.coe
dist_val_le_dist 📖mathematicalReal
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
TopologicalSpace.Opens
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
TopologicalSpace.Opens.CompleteCopy
instDist
le_add_of_nonneg_right
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
abs_nonneg
covariant_swap_add_of_covariant_add
instCompleteSpace 📖mathematicalCompleteSpace
TopologicalSpace.Opens.CompleteCopy
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
Metric.complete_of_convergent_controlled_sequences
Nat.instAtLeastTwoHAddOfNat
one_div
inv_pow
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
Real.instIsOrderedRing
Real.instNontrivial
cauchySeq_of_le_tendsto_0
LE.le.trans
dist_val_le_dist
LT.lt.le
tendsto_pow_atTop_nhds_zero_of_lt_one
AddGroup.existsAddOfLE
Real.instArchimedean
instOrderTopologyReal
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.instAtLeastTwo
cauchySeq_tendsto_of_complete
tendsto_subtype_rng
sub_lt_iff_lt_add
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_abs_self
abs_sub_comm
le_add_of_nonneg_left
dist_nonneg
le_rfl
lt_of_le_of_lt
div_nonneg
zero_le_one
Metric.infDist_nonneg
IsClosed.notMem_iff_infDist_pos
IsOpen.isClosed_compl
TopologicalSpace.Opens.isOpen
div_le_iff₀'
div_le_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Filter.Tendsto.comp
Continuous.tendsto
Metric.continuous_infDist_pt
ge_of_tendsto'
instClosedIciTopology
OrderTopology.to_orderClosedTopology
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
lt_of_lt_of_le
div_pos
one_pos
NeZero.one
instSecondCountableTopology 📖mathematicalSecondCountableTopology
TopologicalSpace.Opens.CompleteCopy
inst
TopologicalSpace.Opens.instSecondCountableOpens
instT0Space 📖mathematicalT0Space
TopologicalSpace.Opens.CompleteCopy
inst
Subtype.t0Space
T3Space.toT0Space
T4Space.t3Space
instT4SpaceOfT1SpaceOfNormalSpace
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
CompletelyNormalSpace.toNormalSpace
UniformSpace.completelyNormalSpace_of_isCountablyGenerated_uniformity
EMetric.instIsCountablyGeneratedUniformity

Topology.IsClosedEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
polishSpace 📖mathematicalTopology.IsClosedEmbeddingPolishSpacePolishSpace.toIsCompletelyMetrizableSpace
isEmbedding
Topology.IsEmbedding.toIsInducing
completeSpace_iff_isComplete_range
Isometry.isUniformInducing
Topology.IsEmbedding.to_isometry
IsClosed.isComplete
TopologicalSpace.UpgradedIsCompletelyMetrizableSpace.toCompleteSpace
isClosed_range
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
Topology.IsEmbedding.secondCountableTopology
PolishSpace.toSecondCountableTopology
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
EMetric.instIsCountablyGeneratedUniformity
T3Space.toT0Space
T4Space.t3Space
instT4SpaceOfT1SpaceOfNormalSpace
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
CompletelyNormalSpace.toNormalSpace
UniformSpace.completelyNormalSpace_of_isCountablyGenerated_uniformity

(root)

Definitions

NameCategoryTheorems
PolishSpace 📖CompData
11 mathmath: Measurable.exists_continuous, IsOpen.polishSpace, Topology.IsClosedEmbedding.polishSpace, UpgradedStandardBorel.toPolishSpace, instPolishSpaceEReal, Equiv.polishSpace_induced, StandardBorelSpace.polish, instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace, MeasurableSet.isClopenable', IsClosed.polishSpace, PolishSpace.instENNReal

Theorems

NameKindAssumesProvesValidatesDepends On
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace 📖mathematicalPolishSpaceUniformSpace.secondCountable_of_separable
EMetric.instIsCountablyGeneratedUniformity

---

← Back to Index