Documentation Verification Report

ProperSpace

📁 Source: Mathlib/Topology/MetricSpace/ProperSpace.lean

Statistics

MetricCount
DefinitionsProperSpace
1
TheoremscompactSpace, isCompact_closedBall, of_isClosed, of_isCompact_closedBall_of_le, of_seq_closedBall, complete_of_proper, instCompactSpaceElemClosedBallOfProperSpace, instProperSpaceAdditive, instProperSpaceMultiplicative, instProperSpaceOrderDual, instProperSpaceReal, instSecondCountableTopologyReal, isCompact_sphere, locallyCompact_of_proper, pi_properSpace, prod_properSpace, proper_of_compact, secondCountable_of_proper
18
Total19

Metric.sphere

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace 📖mathematicalCompactSpace
Set.Elem
Metric.sphere
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
isCompact_iff_compactSpace
isCompact_sphere

ProperSpace

Theorems

NameKindAssumesProvesValidatesDepends On
isCompact_closedBall 📖mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Metric.closedBall
of_isClosed 📖mathematicalProperSpace
Set.Elem
Subtype.pseudoMetricSpace
Set
Set.instMembership
Topology.IsEmbedding.isCompact_iff
Topology.IsEmbedding.subtypeVal
IsCompact.of_isClosed_subset
isCompact_closedBall
IsClosed.isClosedMap_subtype_val
Metric.isClosed_closedBall
Set.image_subset_iff
subset_rfl
Set.instReflSubset
of_isCompact_closedBall_of_le 📖mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Metric.closedBall
ProperSpaceIsCompact.of_isClosed_subset
le_max_right
Metric.isClosed_closedBall
Metric.closedBall_subset_closedBall
le_max_left
of_seq_closedBall 📖mathematicalFilter.Tendsto
Real
Filter.atTop
Real.instPreorder
Filter.Eventually
IsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Metric.closedBall
ProperSpaceFilter.Eventually.exists
Filter.Eventually.and
Filter.Tendsto.eventually_ge_atTop
IsCompact.of_isClosed_subset
Metric.isClosed_closedBall
Metric.closedBall_subset_closedBall'

(root)

Definitions

NameCategoryTheorems
ProperSpace 📖CompData
30 mathmath: Int.instProperSpace, FiniteDimensional.proper_rclike, LipschitzWith.properSpace, ProperSpace.of_seq_closedBall, prod_properSpace, FiniteDimensional.RCLike.properSpace_submodule, instProperSpaceAdditive, PNat.instProperSpace, ProperSpace.of_nontriviallyNormedField_of_weaklyLocallyCompactSpace, PeriodPair.instProperSpaceSubtypeComplexMemSubmoduleIntLattice, instProperSpaceReal, Valued.integer.properSpace_iff_completeSpace_and_isDiscreteValuationRing_integer_and_finite_residueField, instProperSpaceMultiplicative, AntilipschitzWith.properSpace, Valued.integer.properSpace_iff_compactSpace_integer, ProperSpace.of_locallyCompact_module, NNReal.instProperSpace, ProperSpace.of_locallyCompactSpace, Complex.instProperSpace, UpperHalfPlane.instProperSpace, FiniteDimensional.proper_real, FiniteDimensional.proper, ProperSpace.of_isClosed, ProperSpace.of_isCompact_closedBall_of_le, Padic.instProperSpace, instProperSpaceOrderDual, properSpace_iff_isProperMap_dist, proper_of_compact, Nat.instProperSpace, instProperSpaceSubtypeMemSubmoduleOfCompleteSpaceOfLocallyCompactSpace

Theorems

NameKindAssumesProvesValidatesDepends On
complete_of_proper 📖mathematicalCompleteSpace
PseudoMetricSpace.toUniformSpace
Metric.cauchy_iff
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Filter.NeBot.nonempty_of_mem
Filter.mem_of_superset
LT.lt.le
isCompact_iff_totallyBounded_isComplete
ProperSpace.isCompact_closedBall
Filter.le_principal_iff
instCompactSpaceElemClosedBallOfProperSpace 📖mathematicalCompactSpace
Set.Elem
Metric.closedBall
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
isCompact_iff_compactSpace
ProperSpace.isCompact_closedBall
instProperSpaceAdditive 📖mathematicalProperSpace
Additive
instPseudoMetricSpaceAdditive
instProperSpaceMultiplicative 📖mathematicalProperSpace
Multiplicative
instPseudoMetricSpaceMultiplicative
instProperSpaceOrderDual 📖mathematicalProperSpace
OrderDual
instPseudoMetricSpaceOrderDual
instProperSpaceReal 📖mathematicalProperSpace
Real
Real.pseudoMetricSpace
ConditionallyCompleteLinearOrder.isCompact_Icc
instOrderTopologyReal
Real.closedBall_eq_Icc
instSecondCountableTopologyReal 📖mathematicalSecondCountableTopology
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
secondCountable_of_proper
instProperSpaceReal
isCompact_sphere 📖mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Metric.sphere
IsCompact.of_isClosed_subset
ProperSpace.isCompact_closedBall
Metric.isClosed_sphere
Metric.sphere_subset_closedBall
locallyCompact_of_proper 📖mathematicalLocallyCompactSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
LocallyCompactSpace.of_hasBasis
Metric.nhds_basis_closedBall
ProperSpace.isCompact_closedBall
pi_properSpace 📖mathematicalProperSpacepseudoMetricSpacePiProperSpace.of_isCompact_closedBall_of_le
closedBall_pi
isCompact_univ_pi
ProperSpace.isCompact_closedBall
prod_properSpace 📖mathematicalProperSpace
Prod.pseudoMetricSpaceMax
closedBall_prod_same
IsCompact.prod
ProperSpace.isCompact_closedBall
proper_of_compact 📖mathematicalProperSpaceIsClosed.isCompact
Metric.isClosed_closedBall
secondCountable_of_proper 📖mathematicalSecondCountableTopology
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
em
ProperSpace.isCompact_closedBall
Metric.iUnion_closedBall_nat
isCompact_empty
Set.iUnion_eq_univ_iff
EMetric.secondCountable_of_sigmaCompact

---

← Back to Index