Documentation Verification Report

Lemmas

📁 Source: Mathlib/Topology/MetricSpace/ProperSpace/Lemmas.lean

Statistics

MetricCount
Definitions0
Theoremsexists_isLocalMin_mem_ball, exists_lt_subset_ball, exists_pos_lt_subset_ball, isClosedMap_dist, isClosedMap_nndist, isProperMap_dist, isProperMap_nndist, properSpace_iff_isProperMap_dist
8
Total8

Metric

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isLocalMin_mem_ball 📖mathematicalContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
closedBall
Set
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ball
IsLocalMin
IsCompact.exists_isLocalMin_mem_open
instClosedIicTopology
OrderTopology.to_orderClosedTopology
ProperSpace.isCompact_closedBall
ball_subset_closedBall
isOpen_ball

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_lt_subset_ball 📖mathematicalSet
Set.instHasSubset
Metric.ball
Real
Real.instLT
le_or_gt
Set.empty_subset
NoMinOrder.exists_lt
instNoMinOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Set.subset_empty_iff
Metric.ball_eq_empty
exists_pos_lt_subset_ball
exists_pos_lt_subset_ball 📖mathematicalReal
Real.instLT
Real.instZero
Set
Set.instHasSubset
Metric.ball
Set.instMembership
Set.Ioo
Real.instPreorder
Set.eq_empty_or_nonempty
Nat.instAtLeastTwoHAddOfNat
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
half_lt_self
Set.empty_subset
IsCompact.of_isClosed_subset
ProperSpace.isCompact_closedBall
HasSubset.Subset.trans
Set.instIsTransSubset
Metric.ball_subset_closedBall
IsCompact.exists_isMaxOn
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Continuous.continuousOn
Continuous.dist
continuous_id'
continuous_const
exists_between
LinearOrderedSemiField.toDenselyOrdered
LE.le.trans_lt
dist_nonneg
Metric.closedBall_subset_ball
isClosedMap_dist 📖mathematicalIsClosedMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Dist.dist
PseudoMetricSpace.toDist
IsProperMap.isClosedMap
isProperMap_dist
isClosedMap_nndist 📖mathematicalIsClosedMap
NNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpaceNNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
IsProperMap.isClosedMap
isProperMap_nndist
isProperMap_dist 📖mathematicalIsProperMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Dist.dist
PseudoMetricSpace.toDist
isProperMap_iff_tendsto_cocompact
OrderClosedTopology.to_t2Space
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
CompactlyCoherentSpace.of_weaklyLocallyCompactSpace
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
Continuous.dist
continuous_const
continuous_id'
LE.le.trans
tendsto_dist_left_cocompact_atTop
atTop_le_cocompact
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
instClosedIciTopology
isProperMap_nndist 📖mathematicalIsProperMap
NNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpaceNNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
Continuous.nndist
continuous_const
continuous_id'
continuous_induced_dom
isProperMap_dist
NNReal.coe_injective
properSpace_iff_isProperMap_dist 📖mathematicalProperSpace
IsProperMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Dist.dist
PseudoMetricSpace.toDist
isProperMap_dist
Set.ext
dist_comm
sub_zero
abs_dist
IsProperMap.isCompact_preimage
ProperSpace.isCompact_closedBall
instProperSpaceReal

---

← Back to Index