Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/MetricSpace/Pseudo/Basic.lean

Statistics

MetricCount
Definitions0
TheoremsisSeparable_image, dist_eq_zero, nndist_eq_zero, finite_cover_balls, isSeparable, cauchy_iff, controlled_of_isUniformEmbedding, exists_ball_inter_eq_singleton_of_mem_discrete, exists_closedBall_inter_eq_singleton_of_discrete, finite_approx_of_totallyBounded, inseparable_iff, inseparable_iff_nndist, isUniformEmbedding_iff, isUniformInducing_iff, secondCountable_of_almost_dense_set, tendstoLocallyUniformlyOn_iff, tendstoLocallyUniformly_iff, tendstoUniformlyOnFilter_iff, tendstoUniformlyOn_iff, tendstoUniformly_iff, totallyBounded_iff, totallyBounded_of_finite_discretization, isSeparable_preimage, isSeparable_preimage, cauchySeq_iff_tendsto_dist_atTop_0, dist_le_Ico_sum_dist, dist_le_Ico_sum_of_dist_le, dist_le_range_sum_dist, dist_le_range_sum_of_dist_le, exists_finite_cover_balls_of_isCompact_closure, finite_cover_balls_of_compact, tendsto_nhds_unique_dist
32
Total32

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
isSeparable_image πŸ“–mathematicalContinuousOn
TopologicalSpace.IsSeparable
Set.imageβ€”Set.image_eq_range
Set.image_univ
TopologicalSpace.IsSeparable.image
TopologicalSpace.isSeparable_univ_iff
TopologicalSpace.IsSeparable.separableSpace
restrict

Inseparable

Theorems

NameKindAssumesProvesValidatesDepends On
dist_eq_zero πŸ“–mathematicalInseparable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Dist.dist
PseudoMetricSpace.toDist
Real
Real.instZero
β€”Metric.inseparable_iff
nndist_eq_zero πŸ“–mathematicalInseparable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NNDist.nndist
PseudoMetricSpace.toNNDist
NNReal
instZeroNNReal
β€”Metric.inseparable_iff_nndist

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
finite_cover_balls πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real
Real.instLT
Real.instZero
Set
Set.instHasSubset
Set.Finite
Set.iUnion
Set.instMembership
Metric.ball
β€”finite_cover_balls_of_compact
isSeparable πŸ“–mathematicalIsCompactTopologicalSpace.IsSeparableβ€”TopologicalSpace.IsSeparable.of_subtype
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
instLindelofSpaceOfSigmaCompactSpace
CompactSpace.sigmaCompact
isCompact_iff_compactSpace
TopologicalSpace.PseudoMetrizableSpace.subtype

Metric

Theorems

NameKindAssumesProvesValidatesDepends On
cauchy_iff πŸ“–mathematicalβ€”Cauchy
PseudoMetricSpace.toUniformSpace
Filter.NeBot
Set
Filter
Filter.instMembership
Real
Real.instLT
Dist.dist
PseudoMetricSpace.toDist
β€”Filter.HasBasis.cauchy_iff
uniformity_basis_dist
controlled_of_isUniformEmbedding πŸ“–mathematicalIsUniformEmbedding
PseudoMetricSpace.toUniformSpace
Real
Real.instLT
Real.instZero
Dist.dist
PseudoMetricSpace.toDist
β€”uniformContinuous_iff
IsUniformInducing.uniformContinuous
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_iff
exists_ball_inter_eq_singleton_of_mem_discrete πŸ“–mathematicalIsDiscrete
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Set
Set.instMembership
Real
Real.instLT
Real.instZero
Set.instInter
ball
Set.instSingletonSet
β€”Filter.HasBasis.exists_inter_eq_singleton_of_mem_discrete
nhds_basis_ball
exists_closedBall_inter_eq_singleton_of_discrete πŸ“–mathematicalIsDiscrete
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Set
Set.instMembership
Real
Real.instLT
Real.instZero
Set.instInter
closedBall
Set.instSingletonSet
β€”Filter.HasBasis.exists_inter_eq_singleton_of_mem_discrete
nhds_basis_closedBall
finite_approx_of_totallyBounded πŸ“–mathematicalTotallyBounded
PseudoMetricSpace.toUniformSpace
Real
Real.instLT
Real.instZero
Set
Set.instHasSubset
Set.Finite
Set.iUnion
Set.instMembership
ball
β€”totallyBounded_iff_subset
dist_mem_uniformity
inseparable_iff πŸ“–mathematicalβ€”Inseparable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Dist.dist
PseudoMetricSpace.toDist
Real
Real.instZero
β€”inseparable_iff_nndist
dist_nndist
NNReal.coe_eq_zero
inseparable_iff_nndist πŸ“–mathematicalβ€”Inseparable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NNDist.nndist
PseudoMetricSpace.toNNDist
NNReal
instZeroNNReal
β€”EMetric.inseparable_iff
edist_nndist
ENNReal.coe_eq_zero
isUniformEmbedding_iff πŸ“–mathematicalβ€”IsUniformEmbedding
PseudoMetricSpace.toUniformSpace
UniformContinuous
Real
Real.instLT
Real.instZero
Dist.dist
PseudoMetricSpace.toDist
β€”isUniformEmbedding_iff
isUniformInducing_iff
isUniformInducing_iff πŸ“–mathematicalβ€”IsUniformInducing
PseudoMetricSpace.toUniformSpace
UniformContinuous
Real
Real.instLT
Real.instZero
Dist.dist
PseudoMetricSpace.toDist
β€”isUniformInducing_iff'
Iff.and
Filter.HasBasis.le_basis_iff
Filter.HasBasis.comap
uniformity_basis_dist
secondCountable_of_almost_dense_set πŸ“–mathematicalSet.Countable
Set
Set.instMembership
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
SecondCountableTopology
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”EMetric.secondCountable_of_almost_dense_set
ENNReal.lt_iff_exists_nnreal_btwn
Set.iUnionβ‚‚_eq_univ_iff
le_trans
LT.lt.le
Nat.cast_zero
tendstoLocallyUniformlyOn_iff πŸ“–mathematicalβ€”TendstoLocallyUniformlyOn
PseudoMetricSpace.toUniformSpace
Set
Filter
Filter.instMembership
nhdsWithin
Filter.Eventually
β€”dist_mem_uniformity
mem_uniformity_dist
Filter.Eventually.mono
tendstoLocallyUniformly_iff πŸ“–mathematicalβ€”TendstoLocallyUniformly
PseudoMetricSpace.toUniformSpace
Set
Filter
Filter.instMembership
nhds
Filter.Eventually
β€”nhdsWithin_univ
tendstoUniformlyOnFilter_iff πŸ“–mathematicalβ€”TendstoUniformlyOnFilter
PseudoMetricSpace.toUniformSpace
Filter.Eventually
Real
Real.instLT
Dist.dist
PseudoMetricSpace.toDist
SProd.sprod
Filter
Filter.instSProd
β€”dist_mem_uniformity
mem_uniformity_dist
Filter.Eventually.mono
tendstoUniformlyOn_iff πŸ“–mathematicalβ€”TendstoUniformlyOn
PseudoMetricSpace.toUniformSpace
Filter.Eventually
β€”dist_mem_uniformity
mem_uniformity_dist
Filter.Eventually.mono
tendstoUniformly_iff πŸ“–mathematicalβ€”TendstoUniformly
PseudoMetricSpace.toUniformSpace
Filter.Eventually
β€”tendstoUniformlyOn_univ
tendstoUniformlyOn_iff
totallyBounded_iff πŸ“–mathematicalβ€”TotallyBounded
PseudoMetricSpace.toUniformSpace
Set.Finite
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
ball
β€”Filter.HasBasis.totallyBounded_iff
uniformity_basis_dist
totallyBounded_of_finite_discretization πŸ“–mathematicalReal
Real.instLT
Dist.dist
PseudoMetricSpace.toDist
Set
Set.instMembership
TotallyBounded
PseudoMetricSpace.toUniformSpace
β€”Set.eq_empty_or_nonempty
totallyBounded_empty
totallyBounded_iff
Set.finite_range
Finite.of_fintype
Function.invFun_eq
Set.iUnion_congr_Prop

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
isSeparable_preimage πŸ“–mathematicalTopology.IsEmbedding
TopologicalSpace.IsSeparable
Set.preimageβ€”Topology.IsInducing.isSeparable_preimage
isInducing

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
isSeparable_preimage πŸ“–mathematicalTopology.IsInducing
TopologicalSpace.IsSeparable
Set.preimageβ€”TopologicalSpace.pseudoMetrizableSpaceUniformity_countably_generated
TopologicalSpace.IsSeparable.separableSpace
UniformSpace.secondCountable_of_separable
instIsCountablyGeneratedProdElemUniformity
Set.mapsTo_preimage
codRestrict
comp
subtypeVal
secondCountableTopology
TopologicalSpace.IsSeparable.of_subtype
TopologicalSpace.SecondCountableTopology.to_separableSpace

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
cauchySeq_iff_tendsto_dist_atTop_0 πŸ“–mathematicalβ€”CauchySeq
PseudoMetricSpace.toUniformSpace
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Filter.Tendsto
Real
Dist.dist
PseudoMetricSpace.toDist
Filter.atTop
Prod.instPreorder
nhds
UniformSpace.toTopologicalSpace
Real.pseudoMetricSpace
Real.instZero
β€”cauchySeq_iff_tendsto
Metric.uniformity_eq_comap_nhds_zero
Filter.tendsto_comap_iff
dist_le_Ico_sum_dist πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Finset.sum
Real.instAddCommMonoid
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
β€”Nat.le_induction
Finset.Ico_self
Finset.sum_empty
dist_self
le_refl
dist_triangle
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
le_rfl
Finset.insert_Ico_right_eq_Ico_add_one
Nat.instNoMaxOrder
Finset.sum_insert
add_comm
dist_le_Ico_sum_of_dist_le πŸ“–mathematicalReal
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Finset.sum
Real.instAddCommMonoid
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
β€”le_trans
dist_le_Ico_sum_dist
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Finset.mem_Ico
dist_le_range_sum_dist πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Finset.sum
Real.instAddCommMonoid
Finset.range
β€”dist_le_Ico_sum_dist
Nat.Ico_zero_eq_range
dist_le_range_sum_of_dist_le πŸ“–mathematicalReal
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Finset.sum
Real.instAddCommMonoid
Finset.range
β€”dist_le_Ico_sum_of_dist_le
zero_le
Nat.instCanonicallyOrderedAdd
Nat.Ico_zero_eq_range
exists_finite_cover_balls_of_isCompact_closure πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
closure
Real
Real.instLT
Real.instZero
Set
Set.instHasSubset
Set.Finite
Set.iUnion
Set.instMembership
Metric.ball
β€”IsCompact.elim_finite_subcover
Metric.isOpen_ball
Metric.mem_closure_iff
Set.mem_iUnion
Subtype.val_injective
Finset.coe_map
Set.image_congr
Subtype.coe_preimage_self
Finset.finite_toSet
Set.iUnion_congr_Prop
Set.iUnion_exists
Set.iUnion_coe_set
HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
finite_cover_balls_of_compact πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real
Real.instLT
Real.instZero
Set
Set.instHasSubset
Set.Finite
Set.iUnion
Set.instMembership
Metric.ball
β€”IsCompact.elim_nhds_subcover
Metric.ball_mem_nhds
Finset.finite_toSet
tendsto_nhds_unique_dist πŸ“–mathematicalFilter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Dist.dist
PseudoMetricSpace.toDist
Real
Real.instZero
β€”Inseparable.dist_eq_zero
tendsto_nhds_unique_inseparable
instR1Space
TopologicalSpace.PseudoMetrizableSpace.regularSpace
UniformSpace.pseudoMetrizableSpace
EMetric.instIsCountablyGeneratedUniformity

---

← Back to Index