Documentation Verification Report

Thickening

πŸ“ Source: Mathlib/Topology/MetricSpace/Thickening.lean

Statistics

MetricCount
Definitionscthickening, thickening
2
Theoremscthickening, thickening, exists_cthickenings, exists_thickenings, of_cthickening_subset_self, of_thickening_subset_self, cthickening_eq_biUnion_closedBall, cthickening, cthickening_eq_biUnion_closedBall, exists_cthickening_subset_open, exists_isCompact_cthickening, exists_thickening_image_subset, exists_thickening_subset_open, ball_subset_thickening, closedBall_subset_cthickening, closedBall_subset_cthickening_singleton, closure_eq_iInter_cthickening, closure_eq_iInter_cthickening', closure_eq_iInter_thickening, closure_eq_iInter_thickening', closure_subset_cthickening, closure_subset_thickening, closure_thickening_subset_cthickening, cthickening_closure, cthickening_cthickening_subset, cthickening_empty, cthickening_eq_biUnion_closedBall, cthickening_eq_iInter_cthickening, cthickening_eq_iInter_cthickening', cthickening_eq_iInter_thickening, cthickening_eq_iInter_thickening', cthickening_eq_iInter_thickening'', cthickening_eq_preimage_infEDist, cthickening_eq_preimage_infEdist, cthickening_max_zero, cthickening_mem_nhdsSet, cthickening_mono, cthickening_of_nonpos, cthickening_singleton, cthickening_subset_iUnion_closedBall_of_lt, cthickening_subset_of_subset, cthickening_subset_thickening, cthickening_subset_thickening', cthickening_thickening_subset, cthickening_union, cthickening_zero, diam_cthickening_le, diam_thickening_le, ediam_cthickening_le, ediam_thickening_le, eventually_notMem_cthickening_of_infEDist_pos, eventually_notMem_cthickening_of_infEdist_pos, eventually_notMem_thickening_of_infEDist_pos, eventually_notMem_thickening_of_infEdist_pos, frontier_cthickening_disjoint, frontier_cthickening_subset, frontier_thickening_disjoint, frontier_thickening_subset, hasBasis_nhdsSet_cthickening, hasBasis_nhdsSet_thickening, infEDist_le_infEDist_cthickening_add, infEDist_le_infEDist_thickening_add, infEdist_le_infEdist_cthickening_add, infEdist_le_infEdist_thickening_add, isClosed_cthickening, isOpen_thickening, mem_cthickening_iff, mem_cthickening_of_dist_le, mem_cthickening_of_edist_le, mem_thickening_iff, mem_thickening_iff_exists_edist_lt, mem_thickening_iff_infDist_lt, mem_thickening_iff_infEDist_lt, mem_thickening_iff_infEdist_lt, self_subset_cthickening, self_subset_thickening, subset_compl_thickening_compl_thickening_self, thickening_ball, thickening_biUnion, thickening_closure, thickening_compl_thickening_self_subset_compl, thickening_cthickening_subset, thickening_empty, thickening_eq_biUnion_ball, thickening_eq_empty_iff, thickening_eq_empty_iff_of_pos, thickening_eq_preimage_infEDist, thickening_eq_preimage_infEdist, thickening_iUnion, thickening_mem_nhdsSet, thickening_mono, thickening_nonempty_iff, thickening_nonempty_iff_of_pos, thickening_of_nonpos, thickening_singleton, thickening_subset_cthickening, thickening_subset_cthickening_of_le, thickening_subset_interior_cthickening, thickening_subset_of_subset, thickening_thickening_subset, thickening_union
101
Total103

Bornology.IsBounded

Theorems

NameKindAssumesProvesValidatesDepends On
cthickening πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
Metric.cthickening
PseudoMetricSpace.toPseudoEMetricSpace
β€”thickening
subset
Metric.cthickening_subset_thickening'
LT.lt.trans_le
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
le_max_right
lt_add_one
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_max_left
thickening πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
Metric.thickening
PseudoMetricSpace.toPseudoEMetricSpace
β€”Set.eq_empty_or_nonempty
Metric.thickening_empty
Metric.isBounded_iff_subset_closedBall
Metric.dist_le_infDist_add_diam
le_imp_le_of_le_of_le
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_of_lt
Metric.mem_thickening_iff_infDist_lt
le_refl

Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
exists_cthickenings πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
IsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Real
Real.instLT
Real.instZero
Metric.cthickening
β€”exists_thickenings
Nat.instAtLeastTwoHAddOfNat
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
mono
Metric.cthickening_subset_thickening'
half_lt_self
exists_thickenings πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
IsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Real
Real.instLT
Real.instZero
Metric.thickening
β€”Metric.exists_pos_forall_lt_edist
Nat.instAtLeastTwoHAddOfNat
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
NNReal.coe_pos
disjoint_iff_inf_le
ENNReal.ofReal_coe_nnreal
NNReal.coe_div
NNReal.coe_two
Metric.mem_thickening_iff_exists_edist_lt
LT.lt.not_ge
edist_triangle_left
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
LT.lt.le
ENNReal.coe_add
add_halves
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing

IsClopen

Theorems

NameKindAssumesProvesValidatesDepends On
of_cthickening_subset_self πŸ“–mathematicalReal
Real.instLT
Real.instZero
Set
Set.instHasSubset
Metric.cthickening
IsClopen
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”of_thickening_subset_self
HasSubset.Subset.trans
Set.instIsTransSubset
Metric.thickening_subset_cthickening
of_thickening_subset_self πŸ“–mathematicalReal
Real.instLT
Real.instZero
Set
Set.instHasSubset
Metric.thickening
IsClopen
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”le_antisymm
Metric.self_subset_thickening
closure_subset_iff_isClosed
Metric.closure_eq_iInter_thickening
LE.le.trans_eq
Set.biInter_subset_of_mem
Metric.isOpen_thickening

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
cthickening_eq_biUnion_closedBall πŸ“–mathematicalReal
Real.instLE
Real.instZero
Metric.cthickening
PseudoMetricSpace.toPseudoEMetricSpace
Set.iUnion
Set
Set.instMembership
Metric.closedBall
β€”Metric.cthickening_eq_biUnion_closedBall
closure_eq

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
cthickening πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Metric.cthickening
PseudoMetricSpace.toPseudoEMetricSpace
β€”Metric.isCompact_of_isClosed_isBounded
Metric.isClosed_cthickening
Bornology.IsBounded.cthickening
isBounded
cthickening_eq_biUnion_closedBall πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real
Real.instLE
Real.instZero
Metric.cthickening
PseudoMetricSpace.toPseudoEMetricSpace
Set.iUnion
Set
Set.instMembership
Metric.closedBall
β€”Set.eq_empty_or_nonempty
Metric.cthickening_empty
Set.biUnion_empty
Set.Subset.antisymm
exists_infEDist_eq_edist
LE.le.trans
le_of_eq
ENNReal.ofReal_le_ofReal_iff
edist_dist
Set.mem_biUnion
Set.iUnionβ‚‚_subset
Metric.closedBall_subset_cthickening
exists_cthickening_subset_open πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
IsOpen
Set
Set.instHasSubset
Real
Real.instLT
Real.instZero
Metric.cthickening
β€”Set.disjoint_compl_right_iff_subset
Disjoint.mono_right
Metric.self_subset_cthickening
Disjoint.exists_cthickenings
HasSubset.Subset.disjoint_compl_right
IsOpen.isClosed_compl
exists_isCompact_cthickening πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Real
Real.instLT
Real.instZero
Metric.cthickening
β€”exists_compact_superset
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
exists_cthickening_subset_open
isOpen_interior
of_isClosed_subset
Metric.isClosed_cthickening
HasSubset.Subset.trans
Set.instIsTransSubset
interior_subset
exists_thickening_image_subset πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
IsOpen
ContinuousAt
Set.MapsTo
Real
Real.instLT
Real.instZero
Set
Filter
Filter.instMembership
nhdsSet
Set.instHasSubset
Metric.thickening
Set.image
β€”induction_on
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
nhdsSet_empty
Set.image_empty
Metric.thickening_empty
nhdsSet_mono
lt_min
union_mem_nhdsSet
Set.image_union
Metric.thickening_union
Set.union_subset_union
Metric.thickening_mono
Set.union_self
Set.singleton_subset_iff
exists_thickening_subset_open
isCompact_singleton
Nat.instAtLeastTwoHAddOfNat
IsOpen.mem_nhds
Metric.isOpen_thickening
Metric.self_subset_thickening
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.instAtLeastTwo
inter_mem_nhdsWithin
interior_mem_nhds
subset_interior_iff_mem_nhdsSet
Metric.thickening_subset_of_subset
Set.image_preimage_subset
Metric.thickening_thickening_subset
add_halves
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
exists_thickening_subset_open πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
IsOpen
Set
Set.instHasSubset
Real
Real.instLT
Real.instZero
Metric.thickening
β€”exists_cthickening_subset_open
HasSubset.Subset.trans
Set.instIsTransSubset
Metric.thickening_subset_cthickening

Metric

Definitions

NameCategoryTheorems
cthickening πŸ“–CompOp
99 mathmath: cthickening_closure, cthickening_mono, cthickening_cthickening_subset, Disjoint.exists_cthickenings, IsCompact.closedBall_mul, closure_thickening, IsCompact.mul_closedBall_one, thickening_subset_cthickening, mem_cthickening_iff, cthickening_thickening_subset, IsCompact.closedBall_zero_add, isCover_iff_subset_cthickening, Convex.cthickening, cthickening_eq_preimage_infEdist, mem_cthickening_of_dist_le, mem_cthickening_of_edist_le, cthickening_eq_iInter_thickening, IsCompact.div_closedBall, blimsup_cthickening_ae_le_of_eventually_mul_le_aux, IsLowerSet.cthickening, tendsto_measure_cthickening, IsCompact.cthickening_eq_biUnion_closedBall, blimsup_cthickening_ae_le_of_eventually_mul_le, cthickening_thickening, cthickening_zero, ediam_cthickening_le, IsCompact.mul_closedBall, closure_eq_iInter_cthickening, neg_cthickening, IsCompact.closedBall_one_mul, IsCompact.closedBall_div, cthickening_eq_preimage_infEDist, cthickening_eq_iInter_cthickening', cthickening_eq_biUnion_closedBall, IsClosed.cthickening_eq_biUnion_closedBall, closure_thickening_subset_cthickening, thickening_subset_interior_cthickening, cthickening_singleton, hasBasis_nhdsSet_cthickening, self_subset_cthickening, IsCompact.sub_closedBall_zero, cthickening_subset_thickening', cthickening_closedBall, IsCompact.cthickening, cthickening_mem_nhdsSet, closure_subset_cthickening, cthickening_subset_of_subset, cthickening_eq_iInter_thickening', infEdist_le_infEdist_cthickening_add, indicator_cthickening_eventually_eq_indicator_closure, IsCompact.closedBall_one_div, cthickening_eq_iInter_cthickening, IsCompact.sub_closedBall, infEdist_cthickening, cthickening_eq_iInter_thickening'', thickening_cthickening, IsCompact.closedBall_zero_sub, infEDist_cthickening, tendsto_measure_cthickening_of_isClosed, frontier_cthickening_disjoint, cthickening_max_zero, IsCompact.exists_cthickening_subset_open, eventually_notMem_cthickening_of_infEdist_pos, tendsto_indicator_cthickening_indicator_closure, blimsup_cthickening_ae_eq_blimsup_thickening, isClosed_cthickening, eventually_notMem_cthickening_of_infEDist_pos, closure_eq_iInter_cthickening', IsCover.subset_cthickening, tendsto_measure_cthickening_of_isCompact, infEDist_le_infEDist_cthickening_add, cthickening_of_nonpos, IsUpperSet.cthickening', cthickening_cthickening, IsCompact.closedBall_add, inv_cthickening, cthickening_subset_thickening, cthickening_ball, blimsup_cthickening_mul_ae_eq, frontier_cthickening_subset, Bornology.IsBounded.cthickening, mulIndicator_cthickening_eventually_eq_mulIndicator_closure, IsCompact.div_closedBall_one, Complex.exists_cthickening_tendstoUniformlyOn, cthickening_union, IsCompact.exists_isCompact_cthickening, closedBall_subset_cthickening_singleton, IsCompact.add_closedBall_zero, thickening_cthickening_subset, tendsto_mulIndicator_cthickening_mulIndicator_closure, thickening_subset_cthickening_of_le, IsLowerSet.cthickening', cthickening_subset_iUnion_closedBall_of_lt, diam_cthickening_le, closedBall_subset_cthickening, IsCompact.add_closedBall, IsUpperSet.cthickening, cthickening_empty, IsCompact.closedBall_sub
thickening πŸ“–CompOp
102 mathmath: ball_sub, thickening_eq_biUnion_ball, mul_ball, mem_thickening_iff_infEDist_lt, infEdist_thickening, closure_thickening, thickening_subset_cthickening, ball_div_one, IsCompact.exists_thickening_image_subset, ediam_thickening_le, cthickening_thickening_subset, indicator_thickening_eventually_eq_indicator_closure, ball_mul_one, ball_subset_thickening, infEdist_le_infEdist_thickening_add, blimsup_thickening_mul_ae_eq_aux, thickening_eq_preimage_infEDist, isOpen_thickening, mem_thickening_iff, thickening_biUnion, ball_mul, cthickening_eq_iInter_thickening, thickening_empty, ball_add_zero, subset_compl_thickening_compl_thickening_self, neg_thickening, frontier_thickening_subset, diam_thickening_le, cthickening_thickening, div_ball, thickening_eq_empty_iff, IsUpperSet.thickening', ball_sub_zero, MeasureTheory.exists_null_frontier_thickening, add_ball_zero, tendsto_measure_thickening, thickening_mono, ball_div, thickening_iUnion, thickening_closedBall, closure_thickening_subset_cthickening, thickening_subset_interior_cthickening, cthickening_subset_thickening', IsUpperSet.thickening, thickening_ball, mem_thickening_iff_infDist_lt, thickening_compl_thickening_self_subset_compl, thickening_nonempty_iff_of_pos, thickening_of_nonpos, mem_thickening_iff_exists_edist_lt, infEDist_thickening, cthickening_eq_iInter_thickening', frontier_thickening_disjoint, thickening_eq_empty_iff_of_pos, thickening_singleton, ball_add, cthickening_eq_iInter_thickening'', thickening_thickening, thickening_cthickening, mem_thickening_iff_infEdist_lt, add_ball, hasBasis_nhdsSet_thickening, self_subset_thickening, closure_eq_iInter_thickening', div_ball_one, infEDist_le_infEDist_thickening_add, mul_ball_one, tendsto_mulIndicator_thickening_mulIndicator_closure, MeasureTheory.BoundedContinuousFunction.integral_le_of_levyProkhorovEDist_lt, IsLowerSet.thickening, MeasureTheory.exists_null_frontiers_thickening, eventually_notMem_thickening_of_infEdist_pos, MeasureTheory.left_measure_le_of_levyProkhorovEDist_lt, blimsup_cthickening_ae_eq_blimsup_thickening, eventually_notMem_thickening_of_infEDist_pos, thickening_nonempty_iff, blimsup_thickening_mul_ae_eq, sub_ball_zero, MeasureTheory.right_measure_le_of_levyProkhorovEDist_lt, IsCompact.exists_thickening_subset_open, cthickening_subset_thickening, thickening_union, Bornology.IsBounded.thickening, thickening_mem_nhdsSet, IsLowerSet.thickening', thickening_subset_of_subset, thickening_ball, closure_subset_thickening, mulIndicator_thickening_eventually_eq_mulIndicator_closure, Disjoint.exists_thickenings, inv_thickening, thickening_cthickening_subset, tendsto_measure_thickening_of_isClosed, thickening_subset_cthickening_of_le, sub_ball, Convex.thickening, MeasureTheory.tendsto_integral_meas_thickening_le, tendsto_indicator_thickening_indicator_closure, thickening_thickening_subset, closure_eq_iInter_thickening, thickening_eq_preimage_infEdist, thickening_closure

Theorems

NameKindAssumesProvesValidatesDepends On
ball_subset_thickening πŸ“–mathematicalSet
Set.instMembership
Set.instHasSubset
ball
thickening
PseudoMetricSpace.toPseudoEMetricSpace
β€”Set.Subset.trans
thickening_singleton
Set.instReflSubset
thickening_subset_of_subset
Set.singleton_subset_iff
closedBall_subset_cthickening πŸ“–mathematicalSet
Set.instMembership
Set.instHasSubset
closedBall
cthickening
PseudoMetricSpace.toPseudoEMetricSpace
β€”HasSubset.Subset.trans
Set.instIsTransSubset
closedBall_subset_cthickening_singleton
cthickening_subset_of_subset
closedBall_subset_cthickening_singleton πŸ“–mathematicalβ€”Set
Set.instHasSubset
closedBall
cthickening
PseudoMetricSpace.toPseudoEMetricSpace
Set.instSingletonSet
β€”lt_or_ge
closedBall_eq_empty
cthickening_singleton
closure_eq_iInter_cthickening πŸ“–mathematicalβ€”closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Set.iInter
Real
Real.instLT
Real.instZero
cthickening
β€”cthickening_zero
cthickening_eq_iInter_cthickening
closure_eq_iInter_cthickening' πŸ“–mathematicalSet.Nonempty
Real
Set
Set.instInter
Set.Ioc
Real.instPreorder
Real.instZero
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Set.iInter
Set.instMembership
cthickening
β€”cthickening_zero
cthickening_eq_iInter_cthickening'
Set.not_subset
Set.Subset.antisymm
Set.subset_iInterβ‚‚
closure_subset_cthickening
cthickening_of_nonpos
not_lt
Set.mem_Ioi
Set.biInter_subset_of_mem
closure_eq_iInter_thickening πŸ“–mathematicalβ€”closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Set.iInter
Real
Real.instLT
Real.instZero
thickening
β€”cthickening_zero
cthickening_eq_iInter_thickening
Eq.ge
closure_eq_iInter_thickening' πŸ“–mathematicalSet
Real
Set.instHasSubset
Set.Ioi
Real.instPreorder
Real.instZero
Set.Nonempty
Set.instInter
Set.Ioc
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Set.iInter
Set.instMembership
thickening
β€”cthickening_zero
cthickening_eq_iInter_thickening'
le_rfl
closure_subset_cthickening πŸ“–mathematicalβ€”Set
Set.instHasSubset
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
cthickening
β€”cthickening_of_nonpos
min_le_right
cthickening_mono
min_le_left
closure_subset_thickening πŸ“–mathematicalReal
Real.instLT
Real.instZero
Set
Set.instHasSubset
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
thickening
β€”cthickening_zero
cthickening_subset_thickening'
closure_thickening_subset_cthickening πŸ“–mathematicalβ€”Set
Set.instHasSubset
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
thickening
cthickening
β€”HasSubset.Subset.trans
Set.instIsTransSubset
closure_mono
thickening_subset_cthickening
IsClosed.closure_subset
isClosed_cthickening
cthickening_closure πŸ“–mathematicalβ€”cthickening
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”infEDist_closure
cthickening_cthickening_subset πŸ“–mathematicalReal
Real.instLE
Real.instZero
Set
Set.instHasSubset
cthickening
Real.instAdd
β€”ENNReal.ofReal_add
LE.le.trans
infEDist_le_infEDist_cthickening_add
le_imp_le_of_le_of_le
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
le_refl
cthickening_empty πŸ“–mathematicalβ€”cthickening
Set
Set.instEmptyCollection
β€”infEDist_empty
cthickening_eq_biUnion_closedBall πŸ“–mathematicalReal
Real.instLE
Real.instZero
cthickening
PseudoMetricSpace.toPseudoEMetricSpace
Set.iUnion
Set
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
closedBall
β€”Set.eq_empty_or_nonempty
cthickening_empty
Set.iUnion_congr_Prop
closure_empty
Set.biUnion_empty
cthickening_closure
Set.Subset.antisymm
IsClosed.exists_infDist_eq_dist
isClosed_closure
closure_nonempty_iff
ENNReal.ofReal_le_ofReal_iff
LE.le.trans
Eq.le
ENNReal.ofReal_toReal_le
Set.mem_biUnion
Set.iUnionβ‚‚_subset
closedBall_subset_cthickening
cthickening_eq_iInter_cthickening πŸ“–mathematicalβ€”cthickening
Set.iInter
Real
Real.instLT
β€”cthickening_eq_iInter_cthickening'
Eq.subset
Set.instReflSubset
Set.inter_eq_right
Set.Ioc_subset_Ioi_self
Set.nonempty_Ioc
cthickening_eq_iInter_cthickening' πŸ“–mathematicalSet
Real
Set.instHasSubset
Set.Ioi
Real.instPreorder
Set.Nonempty
Set.instInter
Set.Ioc
cthickening
Set.iInter
Set.instMembership
β€”Set.Subset.antisymm
Set.subset_iInterβ‚‚
cthickening_mono
le_of_lt
ENNReal.le_of_forall_pos_le_add
lt_add_of_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
NNReal.coe_pos
LE.le.trans
ENNReal.ofReal_le_ofReal
ENNReal.coe_nnreal_eq
ENNReal.ofReal_add_le
cthickening_eq_iInter_thickening πŸ“–mathematicalReal
Real.instLE
Real.instZero
cthickening
Set.iInter
Real.instLT
thickening
β€”cthickening_eq_iInter_thickening'
Eq.subset
Set.instReflSubset
Set.inter_eq_right
Set.Ioc_subset_Ioi_self
Set.nonempty_Ioc
cthickening_eq_iInter_thickening' πŸ“–mathematicalReal
Real.instLE
Real.instZero
Set
Set.instHasSubset
Set.Ioi
Real.instPreorder
Set.Nonempty
Set.instInter
Set.Ioc
cthickening
Set.iInter
Set.instMembership
thickening
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
Set.subset_iInterβ‚‚
cthickening_subset_thickening'
lt_of_le_of_lt
HasSubset.Subset.trans
Set.instIsTransSubset
thickening_mono
cthickening_eq_iInter_cthickening'
Set.iInterβ‚‚_mono
thickening_subset_cthickening
cthickening_eq_iInter_thickening'' πŸ“–mathematicalβ€”cthickening
Set.iInter
Real
Real.instLT
Real.instMax
Real.instZero
thickening
β€”cthickening_max_zero
cthickening_eq_iInter_thickening
le_max_left
cthickening_eq_preimage_infEDist πŸ“–mathematicalβ€”cthickening
Set.preimage
ENNReal
infEDist
Set.Iic
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.ofReal
β€”β€”
cthickening_eq_preimage_infEdist πŸ“–mathematicalβ€”cthickening
Set.preimage
ENNReal
infEDist
Set.Iic
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.ofReal
β€”cthickening_eq_preimage_infEDist
cthickening_max_zero πŸ“–mathematicalβ€”cthickening
Real
Real.instMax
Real.instZero
β€”le_total
sup_of_le_left
cthickening_of_nonpos
sup_of_le_right
cthickening_mem_nhdsSet πŸ“–mathematicalReal
Real.instLT
Real.instZero
Set
Filter
Filter.instMembership
nhdsSet
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
cthickening
β€”Filter.mem_of_superset
thickening_mem_nhdsSet
thickening_subset_cthickening
cthickening_mono πŸ“–mathematicalReal
Real.instLE
Set
Set.instHasSubset
cthickening
β€”Set.preimage_mono
Set.Iic_subset_Iic
ENNReal.ofReal_le_ofReal
cthickening_of_nonpos πŸ“–mathematicalReal
Real.instLE
Real.instZero
cthickening
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”Set.ext
ENNReal.ofReal_eq_zero
ENNReal.instCanonicallyOrderedAdd
cthickening_singleton πŸ“–mathematicalReal
Real.instLE
Real.instZero
cthickening
PseudoMetricSpace.toPseudoEMetricSpace
Set
Set.instSingletonSet
closedBall
β€”Set.ext
infEDist_singleton
edist_dist
ENNReal.ofReal_le_ofReal_iff
cthickening_subset_iUnion_closedBall_of_lt πŸ“–mathematicalReal
Real.instLT
Real.instZero
Set
Set.instHasSubset
cthickening
PseudoMetricSpace.toPseudoEMetricSpace
Set.iUnion
Set.instMembership
closedBall
β€”HasSubset.Subset.trans
Set.instIsTransSubset
cthickening_subset_thickening'
mem_thickening_iff
Set.mem_iUnionβ‚‚
LT.lt.le
cthickening_subset_of_subset πŸ“–mathematicalSet
Set.instHasSubset
cthickeningβ€”le_trans
infEDist_anti
cthickening_subset_thickening πŸ“–mathematicalReal
Real.instLT
NNReal.toReal
Set
Set.instHasSubset
cthickening
thickening
β€”LE.le.trans_lt
Membership.mem.out
ENNReal.ofReal_lt_ofReal_iff
lt_of_le_of_lt
Subtype.prop
cthickening_subset_thickening' πŸ“–mathematicalReal
Real.instLT
Real.instZero
Set
Set.instHasSubset
cthickening
thickening
β€”lt_of_le_of_lt
Membership.mem.out
ENNReal.ofReal_lt_ofReal_iff
cthickening_thickening_subset πŸ“–mathematicalReal
Real.instLE
Real.instZero
Set
Set.instHasSubset
cthickening
thickening
Real.instAdd
β€”le_total
thickening_of_nonpos
cthickening_empty
ENNReal.ofReal_add
LE.le.trans
infEDist_le_infEDist_thickening_add
le_imp_le_of_le_of_le
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
le_refl
cthickening_union πŸ“–mathematicalβ€”cthickening
Set
Set.instUnion
β€”infEDist_union
cthickening_zero πŸ“–mathematicalβ€”cthickening
Real
Real.instZero
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”cthickening_of_nonpos
le_rfl
diam_cthickening_le πŸ“–mathematicalReal
Real.instLE
Real.instZero
diam
cthickening
PseudoMetricSpace.toPseudoEMetricSpace
Real.instAdd
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
CanLift.prf
NNReal.canLift
LE.le.trans_eq
ENNReal.toReal_le_add'
ediam_cthickening_le
top_unique
ediam_mono
self_subset_cthickening
ENNReal.instCharZero
instIsEmptyFalse
ENNReal.toReal_mul
ENNReal.toReal_ofNat
diam_thickening_le πŸ“–mathematicalReal
Real.instLE
Real.instZero
diam
thickening
PseudoMetricSpace.toPseudoEMetricSpace
Real.instAdd
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
LE.le.trans
diam_mono
thickening_subset_cthickening
Bornology.IsBounded.cthickening
diam_cthickening_le
LE.le.eq_or_lt
thickening_of_nonpos
diam_empty
MulZeroClass.mul_zero
add_zero
diam_eq_zero_of_unbounded
Bornology.IsBounded.subset
self_subset_thickening
le_of_lt
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
diam_nonneg
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
ediam_cthickening_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ediam
cthickening
NNReal.toReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Distrib.toMul
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
ENNReal.ofNNReal
β€”ediam_le
Nat.instAtLeastTwoHAddOfNat
ENNReal.le_of_forall_pos_le_add
ENNReal.coe_lt_coe
lt_add_of_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
NNReal.addLeftMono
LE.le.trans_lt
ENNReal.ofReal_coe_nnreal
mem_cthickening_iff
infEDist_lt_iff
edist_triangle_right
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
LT.lt.le
edist_le_infEDist_add_ediam
le_imp_le_of_le_of_le
add_le_add_right
add_le_add_left
le_refl
two_mul
AddSemigroup.to_isAssociative
AddCommMagma.to_isCommutative
ediam_thickening_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ediam
thickening
NNReal.toReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Distrib.toMul
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
ENNReal.ofNNReal
β€”LE.le.trans
Nat.instAtLeastTwoHAddOfNat
ediam_mono
thickening_subset_cthickening
ediam_cthickening_le
eventually_notMem_cthickening_of_infEDist_pos πŸ“–mathematicalSet
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Filter.Eventually
Real
cthickening
nhds
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
β€”exists_real_pos_lt_infEDist_of_notMem_closure
Filter.mp_mem
eventually_lt_nhds
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Filter.univ_mem'
LT.lt.trans
ENNReal.ofReal_lt_ofReal_iff
eventually_notMem_cthickening_of_infEdist_pos πŸ“–mathematicalSet
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Filter.Eventually
Real
cthickening
nhds
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
β€”eventually_notMem_cthickening_of_infEDist_pos
eventually_notMem_thickening_of_infEDist_pos πŸ“–mathematicalSet
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Filter.Eventually
Real
thickening
nhds
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
β€”exists_real_pos_lt_infEDist_of_notMem_closure
Filter.mp_mem
eventually_lt_nhds
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Filter.univ_mem'
LE.le.trans
ENNReal.ofReal_le_ofReal
LT.lt.le
eventually_notMem_thickening_of_infEdist_pos πŸ“–mathematicalSet
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Filter.Eventually
Real
thickening
nhds
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
β€”eventually_notMem_thickening_of_infEDist_pos
frontier_cthickening_disjoint πŸ“–mathematicalβ€”Pairwise
NNReal
Function.onFun
Set
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
frontier
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
cthickening
NNReal.toReal
β€”Disjoint.mono
frontier_cthickening_subset
Disjoint.preimage
Set.disjoint_singleton
ENNReal.ofReal_coe_nnreal
frontier_cthickening_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
frontier
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
cthickening
setOf
ENNReal
infEDist
ENNReal.ofReal
β€”frontier_le_subset_eq
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
continuous_infEDist
continuous_const
frontier_thickening_disjoint πŸ“–mathematicalβ€”Pairwise
Real
Function.onFun
Set
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
frontier
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
thickening
β€”pairwise_disjoint_on
le_total
thickening_of_nonpos
frontier_empty
Disjoint.mono
frontier_thickening_subset
Disjoint.preimage
Set.disjoint_singleton
LT.lt.ne
ENNReal.toReal_ofReal
LE.le.trans
LT.lt.le
frontier_thickening_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
frontier
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
thickening
setOf
ENNReal
infEDist
ENNReal.ofReal
β€”frontier_lt_subset_eq
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
continuous_infEDist
continuous_const
hasBasis_nhdsSet_cthickening πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Filter.HasBasis
Real
nhdsSet
Real.instLT
Real.instZero
cthickening
β€”Filter.HasBasis.to_hasBasis'
hasBasis_nhdsSet
IsCompact.exists_cthickening_subset_open
cthickening_mem_nhdsSet
hasBasis_nhdsSet_thickening πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Filter.HasBasis
Real
nhdsSet
Real.instLT
Real.instZero
thickening
β€”Filter.HasBasis.to_hasBasis'
hasBasis_nhdsSet
IsCompact.exists_thickening_subset_open
thickening_mem_nhdsSet
infEDist_le_infEDist_cthickening_add πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
infEDist
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
cthickening
ENNReal.ofReal
β€”le_of_forall_gt
ENNReal.instOrderedSub
LE.le.trans_lt
infEDist_le_edist_add_infEDist
LT.lt.trans_eq
ENNReal.add_lt_add_of_lt_of_le
LT.lt.ne
ENNReal.ofReal_lt_top
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
ENNReal.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
LE.le.trans
le_self_add
LT.lt.le
lt_tsub_iff_left
infEDist_le_infEDist_thickening_add πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
infEDist
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
thickening
ENNReal.ofReal
β€”LE.le.trans
infEDist_le_infEDist_cthickening_add
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
infEDist_anti
thickening_subset_cthickening
infEdist_le_infEdist_cthickening_add πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
infEDist
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
cthickening
ENNReal.ofReal
β€”infEDist_le_infEDist_cthickening_add
infEdist_le_infEdist_thickening_add πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
infEDist
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
thickening
ENNReal.ofReal
β€”infEDist_le_infEDist_thickening_add
isClosed_cthickening πŸ“–mathematicalβ€”IsClosed
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
cthickening
β€”IsClosed.preimage
continuous_infEDist
isClosed_Iic
instClosedIicTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
isOpen_thickening πŸ“–mathematicalβ€”IsOpen
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
thickening
β€”Continuous.isOpen_preimage
continuous_infEDist
isOpen_Iio
instClosedIciTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
mem_cthickening_iff πŸ“–mathematicalβ€”Set
Set.instMembership
cthickening
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
infEDist
ENNReal.ofReal
β€”β€”
mem_cthickening_of_dist_le πŸ“–mathematicalSet
Set.instMembership
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
cthickening
PseudoMetricSpace.toPseudoEMetricSpace
β€”mem_cthickening_of_edist_le
edist_dist
ENNReal.ofReal_le_ofReal
mem_cthickening_of_edist_le πŸ“–mathematicalSet
Set.instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
ENNReal.ofReal
cthickeningβ€”LE.le.trans
infEDist_le_edist_of_mem
mem_thickening_iff πŸ“–mathematicalβ€”Set
Set.instMembership
thickening
PseudoMetricSpace.toPseudoEMetricSpace
Real
Real.instLT
Dist.dist
PseudoMetricSpace.toDist
β€”dist_edist
ENNReal.lt_ofReal_iff_toReal_lt
edist_ne_top
mem_thickening_iff_exists_edist_lt πŸ“–mathematicalβ€”Set
Set.instMembership
thickening
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
ENNReal.ofReal
β€”infEDist_lt_iff
mem_thickening_iff_infDist_lt πŸ“–mathematicalSet.NonemptySet
Set.instMembership
thickening
PseudoMetricSpace.toPseudoEMetricSpace
Real
Real.instLT
infDist
β€”ENNReal.lt_ofReal_iff_toReal_lt
infEDist_ne_top
mem_thickening_iff_infEDist_lt πŸ“–mathematicalβ€”Set
Set.instMembership
thickening
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
infEDist
ENNReal.ofReal
β€”β€”
mem_thickening_iff_infEdist_lt πŸ“–mathematicalβ€”Set
Set.instMembership
thickening
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
infEDist
ENNReal.ofReal
β€”mem_thickening_iff_infEDist_lt
self_subset_cthickening πŸ“–mathematicalβ€”Set
Set.instHasSubset
cthickening
β€”HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
closure_subset_cthickening
self_subset_thickening πŸ“–mathematicalReal
Real.instLT
Real.instZero
Set
Set.instHasSubset
thickening
β€”HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
closure_subset_thickening
subset_compl_thickening_compl_thickening_self πŸ“–mathematicalβ€”Set
Set.instHasSubset
Compl.compl
Set.instCompl
thickening
β€”le_infEDist
PseudoEMetricSpace.edist_comm
le_trans
infEDist_le_edist_of_mem
thickening_ball πŸ“–mathematicalβ€”Set
Set.instHasSubset
thickening
PseudoMetricSpace.toPseudoEMetricSpace
ball
Real
Real.instAdd
β€”thickening_singleton
thickening_thickening_subset
thickening_biUnion πŸ“–mathematicalβ€”thickening
Set.iUnion
Set
Set.instMembership
β€”thickening_iUnion
thickening_closure πŸ“–mathematicalβ€”thickening
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”infEDist_closure
thickening_compl_thickening_self_subset_compl πŸ“–mathematicalβ€”Set
Set.instHasSubset
thickening
Compl.compl
Set.instCompl
β€”Set.compl_subset_compl
compl_compl
subset_compl_thickening_compl_thickening_self
thickening_cthickening_subset πŸ“–mathematicalReal
Real.instLE
Real.instZero
Set
Set.instHasSubset
thickening
cthickening
Real.instAdd
β€”le_total
thickening_of_nonpos
ENNReal.ofReal_add
LE.le.trans_lt
infEDist_le_edist_add_infEDist
ENNReal.add_lt_add_of_lt_of_le
LT.lt.ne
ENNReal.ofReal_lt_top
thickening_empty πŸ“–mathematicalβ€”thickening
Set
Set.instEmptyCollection
β€”infEDist_empty
thickening_eq_biUnion_ball πŸ“–mathematicalβ€”thickening
PseudoMetricSpace.toPseudoEMetricSpace
Set.iUnion
Set
Set.instMembership
ball
β€”Set.ext
mem_thickening_iff
thickening_eq_empty_iff πŸ“–mathematicalβ€”thickening
Set
Set.instEmptyCollection
Real
Real.instLE
Real.instZero
β€”lt_or_ge
thickening_of_nonpos
thickening_eq_empty_iff_of_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
thickening
Set
Set.instEmptyCollection
β€”Set.subset_eq_empty
self_subset_thickening
thickening_empty
thickening_eq_preimage_infEDist πŸ“–mathematicalβ€”thickening
Set.preimage
ENNReal
infEDist
Set.Iio
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.ofReal
β€”β€”
thickening_eq_preimage_infEdist πŸ“–mathematicalβ€”thickening
Set.preimage
ENNReal
infEDist
Set.Iio
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.ofReal
β€”thickening_eq_preimage_infEDist
thickening_iUnion πŸ“–mathematicalβ€”thickening
Set.iUnion
β€”infEDist_iUnion
Set.setOf_exists
thickening_mem_nhdsSet πŸ“–mathematicalReal
Real.instLT
Real.instZero
Set
Filter
Filter.instMembership
nhdsSet
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
thickening
β€”IsOpen.mem_nhdsSet
isOpen_thickening
self_subset_thickening
thickening_mono πŸ“–mathematicalReal
Real.instLE
Set
Set.instHasSubset
thickening
β€”Set.preimage_mono
Set.Iio_subset_Iio
ENNReal.ofReal_le_ofReal
thickening_nonempty_iff πŸ“–mathematicalβ€”Set.Nonempty
thickening
Real
Real.instLT
Real.instZero
β€”β€”
thickening_nonempty_iff_of_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
Set.Nonempty
thickening
β€”thickening_eq_empty_iff_of_pos
thickening_of_nonpos πŸ“–mathematicalReal
Real.instLE
Real.instZero
thickening
Set
Set.instEmptyCollection
β€”Set.eq_empty_of_forall_notMem
LE.le.not_gt
Eq.trans_le
ENNReal.ofReal_of_nonpos
bot_le
thickening_singleton πŸ“–mathematicalβ€”thickening
PseudoMetricSpace.toPseudoEMetricSpace
Set
Set.instSingletonSet
ball
β€”Set.ext
thickening_subset_cthickening πŸ“–mathematicalβ€”Set
Set.instHasSubset
thickening
cthickening
β€”LT.lt.le
Set.mem_setOf_eq
thickening.eq_1
thickening_subset_cthickening_of_le πŸ“–mathematicalReal
Real.instLE
Set
Set.instHasSubset
thickening
cthickening
β€”HasSubset.Subset.trans
Set.instIsTransSubset
thickening_subset_cthickening
cthickening_mono
thickening_subset_interior_cthickening πŸ“–mathematicalβ€”Set
Set.instHasSubset
thickening
interior
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
cthickening
β€”HasSubset.Subset.trans
Set.instIsTransSubset
subset_interior_iff_isOpen
isOpen_thickening
interior_mono
thickening_subset_cthickening
thickening_subset_of_subset πŸ“–mathematicalSet
Set.instHasSubset
thickeningβ€”lt_of_le_of_lt
infEDist_anti
thickening_thickening_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
thickening
Real
Real.instAdd
β€”le_total
thickening_of_nonpos
thickening_empty
ENNReal.ofReal_add
LE.le.trans_lt
PseudoEMetricSpace.edist_triangle
ENNReal.add_lt_add
thickening_union πŸ“–mathematicalβ€”thickening
Set
Set.instUnion
β€”infEDist_union

---

← Back to Index