Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/Metrizable/Basic.lean

Statistics

MetricCount
DefinitionsPseudoMetrizableSpace, pseudoMetrizableSpaceUniformity
2
TheoremsmetrizableSpace, exists_countable_dense_subset, secondCountableTopology, separableSpace, subtype, toPseudoMetrizableSpace, toT0Space, exists_countably_generated, firstCountableTopology, regularSpace, subtype, toMetrizableSpace, instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace, metrizableSpace_pi, metrizableSpace_prod, pseudoMetrizableSpaceUniformity_countably_generated, pseudoMetrizableSpace_pi, pseudoMetrizableSpace_prod, t2Space_of_metrizableSpace, metrizableSpace, pseudoMetrizableSpace, pseudoMetrizableSpace
22
Total24

TopologicalSpace

Definitions

NameCategoryTheorems
PseudoMetrizableSpace πŸ“–CompData
10 mathmath: MetrizableSpace.toPseudoMetrizableSpace, ContinuousMap.instPseudoMetrizableSpace, PseudoEMetricSpace.pseudoMetrizableSpace, Topology.IsInducing.pseudoMetrizableSpace, MeasureTheory.instPseudoMetrizableSpaceProbabilityMeasureOfSeparableSpace, UniformSpace.pseudoMetrizableSpace, IsCompletelyPseudoMetrizableSpace.PseudoMetrizableSpace, pseudoMetrizableSpace_prod, PseudoMetrizableSpace.of_regularSpace_secondCountableTopology, PseudoMetrizableSpace.subtype
pseudoMetrizableSpaceUniformity πŸ“–CompOp
1 mathmath: pseudoMetrizableSpaceUniformity_countably_generated

Theorems

NameKindAssumesProvesValidatesDepends On
instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace πŸ“–mathematicalβ€”SecondCountableTopologyβ€”pseudoMetrizableSpaceUniformity_countably_generated
UniformSpace.has_seq_basis
Set.countable_iUnion
instCountableNat
mem_closure_iff_frequently
nhds_eq_comap_uniformity
Filter.frequently_comap
Filter.HasBasis.frequently_iff
Filter.HasAntitoneBasis.toHasBasis
Set.mem_iUnionβ‚‚
Set.eq_univ_iff_forall
UniformSpace.ball_eq_of_symmetry
Set.mem_iUnion_of_mem
LindelofSpace.elim_nhds_subcover
UniformSpace.ball_mem_nhds
Filter.HasAntitoneBasis.mem
UniformSpace.secondCountable_of_separable
metrizableSpace_pi πŸ“–mathematicalMetrizableSpacePi.topologicalSpaceβ€”pseudoMetrizableSpace_pi
MetrizableSpace.toPseudoMetrizableSpace
Pi.instT0Space
MetrizableSpace.toT0Space
metrizableSpace_prod πŸ“–mathematicalβ€”MetrizableSpace
instTopologicalSpaceProd
β€”pseudoMetrizableSpace_prod
MetrizableSpace.toPseudoMetrizableSpace
Prod.instT0Space
MetrizableSpace.toT0Space
pseudoMetrizableSpaceUniformity_countably_generated πŸ“–mathematicalβ€”Filter.IsCountablyGenerated
uniformity
pseudoMetrizableSpaceUniformity
β€”PseudoMetrizableSpace.exists_countably_generated
pseudoMetrizableSpace_pi πŸ“–mathematicalPseudoMetrizableSpacePi.topologicalSpaceβ€”pseudoMetrizableSpaceUniformity_countably_generated
UniformSpace.pseudoMetrizableSpace
instIsCountablyGeneratedProdForallUniformityOfCountable
Finite.to_countable
pseudoMetrizableSpace_prod πŸ“–mathematicalβ€”PseudoMetrizableSpace
instTopologicalSpaceProd
β€”pseudoMetrizableSpaceUniformity_countably_generated
UniformSpace.pseudoMetrizableSpace
instIsCountablyGeneratedProdUniformity
t2Space_of_metrizableSpace πŸ“–mathematicalβ€”T2Spaceβ€”T25Space.t2Space
T3Space.t25Space
instT3Space
MetrizableSpace.toT0Space
PseudoMetrizableSpace.regularSpace
MetrizableSpace.toPseudoMetrizableSpace

TopologicalSpace.DiscreteTopology

Theorems

NameKindAssumesProvesValidatesDepends On
metrizableSpace πŸ“–mathematicalβ€”TopologicalSpace.MetrizableSpaceβ€”DiscreteTopology.eq_bot
Filter.isCountablyGenerated_principal
T1Space.t0Space
T2Space.t1Space
DiscreteTopology.toT2Space

TopologicalSpace.IsSeparable

Theorems

NameKindAssumesProvesValidatesDepends On
exists_countable_dense_subset πŸ“–mathematicalTopologicalSpace.IsSeparableSet
Set.instHasSubset
Set.Countable
closure
β€”TopologicalSpace.pseudoMetrizableSpaceUniformity_countably_generated
UniformSpace.subset_countable_closure_of_almost_dense_set
UniformSpace.mem_closure_iff_ball
symmetrize_mem_uniformity
Set.mem_biUnion
UniformSpace.ball_mono
SetRel.symmetrize_subset_inv
secondCountableTopology πŸ“–mathematicalTopologicalSpace.IsSeparableSecondCountableTopology
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”Set.Countable.to_subtype
subset_closure
Set.countable_range
Subtype.dense_iff
Set.range_comp
Set.val_comp_inclusion
Subtype.range_coe
subset_refl
Set.instReflSubset
TopologicalSpace.PseudoMetrizableSpace.subtype
TopologicalSpace.pseudoMetrizableSpaceUniformity_countably_generated
UniformSpace.secondCountable_of_separable
Topology.IsEmbedding.secondCountableTopology
Topology.IsEmbedding.inclusion
separableSpace πŸ“–mathematicalTopologicalSpace.IsSeparableTopologicalSpace.SeparableSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”exists_countable_dense_subset
CanLift.prf
Set.canLift
Subtype.canLift
Set.countable_of_injective_of_countable_image
Function.Injective.injOn
Subtype.coe_injective
Topology.IsInducing.dense_iff
Topology.IsInducing.subtypeVal

TopologicalSpace.MetrizableSpace

Theorems

NameKindAssumesProvesValidatesDepends On
subtype πŸ“–mathematicalβ€”TopologicalSpace.MetrizableSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”Topology.IsEmbedding.metrizableSpace
Topology.IsEmbedding.subtypeVal
toPseudoMetrizableSpace πŸ“–mathematicalβ€”TopologicalSpace.PseudoMetrizableSpaceβ€”β€”
toT0Space πŸ“–mathematicalβ€”T0Spaceβ€”β€”

TopologicalSpace.PseudoMetrizableSpace

Theorems

NameKindAssumesProvesValidatesDepends On
exists_countably_generated πŸ“–mathematicalβ€”UniformSpace.toTopologicalSpace
Filter.IsCountablyGenerated
uniformity
β€”β€”
firstCountableTopology πŸ“–mathematicalβ€”FirstCountableTopologyβ€”TopologicalSpace.pseudoMetrizableSpaceUniformity_countably_generated
UniformSpace.firstCountableTopology
regularSpace πŸ“–mathematicalβ€”RegularSpaceβ€”UniformSpace.to_regularSpace
subtype πŸ“–mathematicalβ€”TopologicalSpace.PseudoMetrizableSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”Topology.IsInducing.pseudoMetrizableSpace
Topology.IsInducing.subtypeVal
toMetrizableSpace πŸ“–mathematicalβ€”TopologicalSpace.MetrizableSpaceβ€”β€”

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
metrizableSpace πŸ“–mathematicalTopology.IsEmbeddingTopologicalSpace.MetrizableSpaceβ€”Topology.IsInducing.pseudoMetrizableSpace
TopologicalSpace.MetrizableSpace.toPseudoMetrizableSpace
toIsInducing
t0Space
TopologicalSpace.MetrizableSpace.toT0Space

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
pseudoMetrizableSpace πŸ“–mathematicalTopology.IsInducingTopologicalSpace.PseudoMetrizableSpaceβ€”TopologicalSpace.pseudoMetrizableSpaceUniformity_countably_generated
UniformSpace.toTopologicalSpace_comap
eq_induced
Filter.comap.isCountablyGenerated

UniformSpace

Theorems

NameKindAssumesProvesValidatesDepends On
pseudoMetrizableSpace πŸ“–mathematicalβ€”TopologicalSpace.PseudoMetrizableSpace
toTopologicalSpace
β€”β€”

---

← Back to Index