Documentation Verification Report

Urysohn

πŸ“ Source: Mathlib/Topology/Metrizable/Urysohn.lean

Statistics

MetricCount
Definitions0
Theoremsof_regularSpace_secondCountableTopology, exists_embedding_l_infty, exists_isInducing_l_infty, metrizableSpace_of_t3_secondCountable
4
Total4

TopologicalSpace

Theorems

NameKindAssumesProvesValidatesDepends On
exists_embedding_l_infty πŸ“–mathematicalβ€”Topology.IsEmbedding
BoundedContinuousFunction
Real
instTopologicalSpaceNat
Real.pseudoMetricSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
BoundedContinuousFunction.instPseudoMetricSpace
β€”exists_isInducing_l_infty
T3Space.toRegularSpace
Topology.IsInducing.isEmbedding
T3Space.toT0Space
exists_isInducing_l_infty πŸ“–mathematicalβ€”Topology.IsInducing
BoundedContinuousFunction
Real
instTopologicalSpaceNat
Real.pseudoMetricSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
BoundedContinuousFunction.instPseudoMetricSpace
β€”exists_countable_basis
Disjoint.mono_right
Set.compl_subset_compl
disjoint_compl_right
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Set.Countable.mono
Set.inter_subset_left
Set.Countable.prod
LE.le.trans
le_hasSum
Real.instIsOrderedAddMonoid
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
SummationFilter.instNeBotUnconditional
SummationFilter.instLeAtTopUnconditional
LT.lt.le
Summable.tendsto_cofinite_zero
instIsTopologicalAddGroupReal
HasSum.summable
exists_continuous_zero_one_of_isClosed
CompletelyNormalSpace.toNormalSpace
CompletelyNormalSpace.of_regularSpace_secondCountableTopology
isClosed_closure
IsOpen.isClosed_compl
IsTopologicalBasis.isOpen
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
instIsUniformAddGroupReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
subset_closure
MulZeroClass.mul_zero
mul_one
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
mul_le_of_le_one_right
Set.Icc_subset_Icc_right
continuous_of_discreteTopology
Real.dist_le_of_mem_Icc_01
Topology.isInducing_iff_nhds
le_antisymm
Filter.HasBasis.ge_iff
Filter.HasBasis.comap
Metric.nhds_basis_closedBall
gt_mem_nhds
Filter.eventually_all_finite
Continuous.tendsto
ContinuousMap.continuous
Metric.closedBall_mem_nhds
Filter.Eventually.mono
BoundedContinuousFunction.dist_le
le_total
Real.dist_le_of_mem_Icc
sub_zero
Filter.HasBasis.le_basis_iff
Metric.nhds_basis_ball
IsTopologicalBasis.nhds_hasBasis
IsTopologicalBasis.exists_closure_subset
IsTopologicalBasis.mem_nhds
LE.le.trans_lt
BoundedContinuousFunction.dist_coe_le_dist
Mathlib.Tactic.Contrapose.contrapose₁
Pi.zero_apply
dist_zero_right
le_abs_self
instDiscreteTopologyNat
Topology.IsInducing.comp
Topology.IsEmbedding.isInducing
Isometry.isEmbedding
BoundedContinuousFunction.isometry_extend
metrizableSpace_of_t3_secondCountable πŸ“–mathematicalβ€”MetrizableSpaceβ€”exists_embedding_l_infty
Topology.IsEmbedding.metrizableSpace
EMetricSpace.metrizableSpace

TopologicalSpace.PseudoMetrizableSpace

Theorems

NameKindAssumesProvesValidatesDepends On
of_regularSpace_secondCountableTopology πŸ“–mathematicalβ€”TopologicalSpace.PseudoMetrizableSpaceβ€”TopologicalSpace.exists_isInducing_l_infty
Topology.IsInducing.pseudoMetrizableSpace
PseudoEMetricSpace.pseudoMetrizableSpace

---

← Back to Index