Documentation Verification Report

NatEmbedding

πŸ“ Source: Mathlib/Topology/NatEmbedding.lean

Statistics

MetricCount
Definitions0
Theoremsexists_infinite_discreteTopology, exists_seq_infinite_isOpen_pairwise_disjoint, exists_topology_isEmbedding_nat
3
Total3

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_infinite_discreteTopology πŸ“–mathematicalβ€”Set.Infinite
DiscreteTopology
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”exists_topology_isEmbedding_nat
Set.infinite_range_of_injective
instInfiniteNat
Topology.IsEmbedding.injective
Topology.IsEmbedding.discreteTopology
instDiscreteTopologyNat
Homeomorph.isEmbedding
exists_seq_infinite_isOpen_pairwise_disjoint πŸ“–mathematicalβ€”Set.Infinite
IsOpen
Pairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Set.singleton_nonempty
isOpen_discrete
Function.instEmbeddingLikeEmbedding
Disjoint.symm
exists_seq_of_forall_finset_exists'
Filter.inter_mem_inf
Filter.biInter_finset_mem
interior_mem_nhds
Filter.mem_principal_self
Filter.NeBot.nonempty_of_mem
t2_separation
IsOpen.inter
isOpen_biInter_finset
isOpen_interior
Filter.mem_of_superset
IsOpen.mem_nhds
Set.disjoint_left
interior_subset
Set.mem_iInterβ‚‚
Set.infinite_iUnion
instInfiniteNat
Pairwise.eq
Set.Nonempty.ne_empty
isOpen_iUnion
Set.disjoint_iUnion_left
Set.disjoint_iUnion_right
exists_topology_isEmbedding_nat πŸ“–mathematicalβ€”Topology.IsEmbedding
instTopologicalSpaceNat
β€”exists_seq_infinite_isOpen_pairwise_disjoint
Topology.IsInducing.isEmbedding
T1Space.t0Space
T2Space.t1Space
DiscreteTopology.toT2Space
instDiscreteTopologyNat
eq_bot_of_singletons_open
Set.eq_singleton_iff_unique_mem
Pairwise.eq
Set.not_disjoint_iff
Set.Infinite.nonempty

---

← Back to Index