Documentation Verification Report

Neighborhoods

πŸ“ Source: Mathlib/Topology/Neighborhoods.lean

Statistics

MetricCount
Definitions0
Theoremsinter_nhds_nonempty, inter_of_isOpen_left, inter_of_isOpen_right, open_subset_closure_inter, eventually_nhds, self_of_nhds, eq_of_nhds, eventuallyEq_nhds, tendsto, eventuallyLE_nhds, mem_closure, mem_of_closed, nhds_interior, compl_mem_nhds, interior_union_left, interior_union_right, mem_of_frequently_of_tendsto, mem_of_tendsto, closure_inter, eventually_mem, inter_closure, mem_nhds, mem_nhds_iff, tendsto_atTop_nhds, ext_iff_nhds, ext_nhds, all_mem_nhds, all_mem_nhds_filter, closure_diff, eventually_eventuallyEq_nhds, eventually_eventuallyLE_nhds, eventually_eventually_nhds, eventually_mem_nhds_iff, eventually_nhds_iff, exists_open_set_nhds, exists_open_set_nhds', frequently_frequently_nhds, frequently_nhds_iff, interior_eq_nhds, interior_eq_nhds', interior_mem_nhds, interior_setOf_eq, isClosed_iff_frequently, isOpen_iff_eventually, isOpen_iff_mem_nhds, isOpen_iff_nhds, isOpen_setOf_eventually_nhds, isOpen_singleton_iff_nhds_eq_pure, isOpen_singleton_iff_punctured_nhds, le_nhds_iff, lift'_nhds_interior, map_nhds, mem_closure_iff_frequently, mem_closure_of_frequently_of_tendsto, mem_closure_of_tendsto, mem_interior_iff_mem_nhds, mem_nhds_iff, mem_of_mem_nhds, nhdsWithin_mono, nhdsWithin_neBot, nhds_basis_closeds, nhds_basis_opens, nhds_basis_opens', nhds_bind_nhds, nhds_def', nhds_le_of_le, nhds_neBot, pure_le_nhds, subset_interior_iff_nhds, tendsto_atBot_of_eventually_const, tendsto_atTop_nhds, tendsto_atTop_of_eventually_const, tendsto_const_nhds, tendsto_inf_principal_nhds_iff_of_forall_eq, tendsto_nhds, tendsto_nhds_of_eventually_eq, tendsto_pure_nhds
77
Total77

Dense

Theorems

NameKindAssumesProvesValidatesDepends On
inter_nhds_nonempty πŸ“–mathematicalDense
Set
Filter
Filter.instMembership
nhds
Set.Nonempty
Set.instInter
β€”mem_nhds_iff
Set.Nonempty.mono
inter_open_nonempty
inter_of_isOpen_left πŸ“–mathematicalDense
IsOpen
Set
Set.instInter
β€”closure_minimal
IsOpen.inter_closure
isClosed_closure
closure_eq
Set.inter_univ
inter_of_isOpen_right πŸ“–mathematicalDense
IsOpen
Set
Set.instInter
β€”inter_of_isOpen_left
Set.inter_comm
open_subset_closure_inter πŸ“–mathematicalDense
IsOpen
Set
Set.instHasSubset
closure
Set.instInter
β€”closure_eq
Set.inter_univ
IsOpen.inter_closure

Filter.Eventually

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_nhds πŸ“–β€”Filter.Eventually
nhds
β€”β€”eventually_nhds_iff
self_of_nhds πŸ“–β€”Filter.Eventually
nhds
β€”β€”mem_of_mem_nhds

Filter.EventuallyEq

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_nhds πŸ“–β€”Filter.EventuallyEq
nhds
β€”β€”Filter.Eventually.self_of_nhds
eventuallyEq_nhds πŸ“–mathematicalFilter.EventuallyEq
nhds
Filter.Eventuallyβ€”Filter.Eventually.eventually_nhds
tendsto πŸ“–mathematicalFilter.EventuallyEqFilter.Tendsto
nhds
β€”tendsto_nhds_of_eventually_eq

Filter.EventuallyLE

Theorems

NameKindAssumesProvesValidatesDepends On
eventuallyLE_nhds πŸ“–mathematicalFilter.EventuallyLE
nhds
Filter.Eventuallyβ€”Filter.Eventually.eventually_nhds

Filter.Frequently

Theorems

NameKindAssumesProvesValidatesDepends On
mem_closure πŸ“–mathematicalFilter.Frequently
Set
Set.instMembership
nhds
closureβ€”mem_closure_iff_frequently
mem_of_closed πŸ“–β€”Filter.Frequently
Set
Set.instMembership
nhds
β€”β€”IsClosed.closure_subset
mem_closure

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
nhds_interior πŸ“–mathematicalFilter.HasBasis
nhds
interiorβ€”lift'_interior
lift'_nhds_interior

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
compl_mem_nhds πŸ“–mathematicalSet
Set.instMembership
Filter
Filter.instMembership
nhds
Compl.compl
Set.instCompl
β€”IsOpen.mem_nhds
isOpen_compl
Set.mem_compl
interior_union_left πŸ“–mathematicalβ€”Set
Set.instHasSubset
interior
Set.instUnion
β€”mem_interior
IsOpen.inter
isOpen_compl
interior_union_right πŸ“–mathematicalβ€”Set
Set.instHasSubset
interior
Set.instUnion
β€”Set.union_comm
interior_union_left
mem_of_frequently_of_tendsto πŸ“–β€”Filter.Frequently
Set
Set.instMembership
Filter.Tendsto
nhds
β€”β€”Filter.Frequently.mem_of_closed
Filter.Tendsto.frequently
mem_of_tendsto πŸ“–β€”Filter.Tendsto
nhds
Filter.Eventually
Set
Set.instMembership
β€”β€”mem_of_frequently_of_tendsto
Filter.Eventually.frequently

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
closure_inter πŸ“–mathematicalIsOpenSet
Set.instHasSubset
Set.instInter
closure
β€”Set.inter_comm
inter_closure
eventually_mem πŸ“–mathematicalIsOpen
Set
Set.instMembership
Filter.Eventually
nhds
β€”mem_nhds
inter_closure πŸ“–mathematicalIsOpenSet
Set.instHasSubset
Set.instInter
closure
β€”Set.compl_subset_compl
Set.compl_inter
IsClosed.interior_union_left
isClosed_compl
mem_nhds πŸ“–mathematicalIsOpen
Set
Set.instMembership
Filter
Filter.instMembership
nhds
β€”mem_nhds_iff
Set.Subset.refl
mem_nhds_iff πŸ“–mathematicalIsOpenSet
Filter
Filter.instMembership
nhds
Set.instMembership
β€”mem_of_mem_nhds
mem_nhds_iff
Set.Subset.rfl

OrderTop

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_atTop_nhds πŸ“–mathematicalβ€”Filter.Tendsto
Filter.atTop
PartialOrder.toPreorder
nhds
Top.top
toTop
Preorder.toLE
β€”Filter.Tendsto.mono_right
Filter.tendsto_atTop_pure
pure_le_nhds

TopologicalSpace

Theorems

NameKindAssumesProvesValidatesDepends On
ext_iff_nhds πŸ“–mathematicalβ€”nhdsβ€”ext
isOpen_iff_nhds
ext_nhds πŸ“–β€”nhdsβ€”β€”ext_iff_nhds

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
all_mem_nhds πŸ“–β€”β€”β€”β€”Filter.HasBasis.forall_iff
nhds_basis_opens
all_mem_nhds_filter πŸ“–mathematicalSet
Set.instHasSubset
Filter
Filter.instMembership
β€”all_mem_nhds
Filter.mem_of_superset
closure_diff πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.instSDiff
closure
β€”Set.inter_comm
IsOpen.inter_closure
isOpen_compl_iff
isClosed_closure
closure_mono
Set.diff_subset_diff
Set.Subset.refl
subset_closure
eventually_eventuallyEq_nhds πŸ“–mathematicalβ€”Filter.Eventually
Filter.EventuallyEq
nhds
β€”eventually_eventually_nhds
eventually_eventuallyLE_nhds πŸ“–mathematicalβ€”Filter.Eventually
Filter.EventuallyLE
nhds
β€”eventually_eventually_nhds
eventually_eventually_nhds πŸ“–mathematicalβ€”Filter.Eventually
nhds
β€”Filter.Eventually.self_of_nhds
Filter.Eventually.eventually_nhds
eventually_mem_nhds_iff πŸ“–mathematicalβ€”Filter.Eventually
Set
Filter
Filter.instMembership
nhds
β€”eventually_eventually_nhds
eventually_nhds_iff πŸ“–mathematicalβ€”Filter.Eventually
nhds
IsOpen
Set
Set.instMembership
β€”mem_nhds_iff
exists_open_set_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Set.instHasSubset
IsOpen
β€”mem_interior_iff_mem_nhds
isOpen_interior
interior_subset
exists_open_set_nhds' πŸ“–mathematicalSet
Filter
Filter.instMembership
iSup
Filter.instSupSet
Set.instMembership
nhds
Set.instHasSubset
IsOpen
β€”exists_open_set_nhds
frequently_frequently_nhds πŸ“–mathematicalβ€”Filter.Frequently
nhds
β€”not_iff_not
frequently_nhds_iff πŸ“–mathematicalβ€”Filter.Frequently
nhds
Set
Set.instMembership
β€”Filter.HasBasis.frequently_iff
nhds_basis_opens
interior_eq_nhds πŸ“–mathematicalβ€”interior
setOf
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
Filter.principal
β€”interior_eq_nhds'
interior_eq_nhds' πŸ“–mathematicalβ€”interior
setOf
Set
Filter
Filter.instMembership
nhds
β€”Set.ext
interior_mem_nhds πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
interior
β€”Filter.mem_of_superset
interior_subset
IsOpen.mem_nhds
isOpen_interior
mem_interior_iff_mem_nhds
interior_setOf_eq πŸ“–mathematicalβ€”interior
setOf
Filter.Eventually
nhds
β€”interior_eq_nhds'
isClosed_iff_frequently πŸ“–mathematicalβ€”IsClosed
Set
Set.instMembership
β€”closure_subset_iff_isClosed
mem_closure_iff_frequently
isOpen_iff_eventually πŸ“–mathematicalβ€”IsOpen
Filter.Eventually
Set
Set.instMembership
nhds
β€”isOpen_iff_mem_nhds
isOpen_iff_mem_nhds πŸ“–mathematicalβ€”IsOpen
Set
Filter
Filter.instMembership
nhds
β€”isOpen_iff_nhds
Filter.le_principal_iff
isOpen_iff_nhds πŸ“–mathematicalβ€”IsOpen
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
Filter.principal
β€”subset_interior_iff_isOpen
interior_eq_nhds
isOpen_setOf_eventually_nhds πŸ“–mathematicalβ€”IsOpen
setOf
Filter.Eventually
nhds
β€”β€”
isOpen_singleton_iff_nhds_eq_pure πŸ“–mathematicalβ€”IsOpen
Set
Set.instSingletonSet
nhds
Filter
Filter.instPure
β€”LE.le.ge_iff_eq'
pure_le_nhds
isOpen_singleton_iff_punctured_nhds πŸ“–mathematicalβ€”IsOpen
Set
Set.instSingletonSet
nhdsWithin
Compl.compl
Set.instCompl
Bot.bot
Filter
Filter.instBot
β€”isOpen_singleton_iff_nhds_eq_pure
nhdsWithin.eq_1
Filter.mem_iff_inf_principal_compl
le_antisymm_iff
pure_le_nhds
le_nhds_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
Set
Filter.instMembership
β€”nhds_def
lift'_nhds_interior πŸ“–mathematicalβ€”Filter.lift'
nhds
interior
β€”Filter.HasBasis.lift'_interior_eq_self
nhds_basis_opens
map_nhds πŸ“–mathematicalβ€”Filter.map
nhds
iInf
Filter
Set
Filter.instInfSet
Set.instMembership
setOf
IsOpen
Filter.principal
Set.image
β€”Filter.HasBasis.eq_biInf
Filter.HasBasis.map
nhds_basis_opens
mem_closure_iff_frequently πŸ“–mathematicalβ€”Set
Set.instMembership
closure
Filter.Frequently
nhds
β€”Filter.Frequently.eq_1
Filter.Eventually.eq_1
mem_interior_iff_mem_nhds
closure_eq_compl_interior_compl
Set.mem_compl_iff
Set.compl_def
mem_closure_of_frequently_of_tendsto πŸ“–mathematicalFilter.Frequently
Set
Set.instMembership
Filter.Tendsto
nhds
closureβ€”Filter.Frequently.mem_closure
Filter.Tendsto.frequently
mem_closure_of_tendsto πŸ“–mathematicalFilter.Tendsto
nhds
Filter.Eventually
Set
Set.instMembership
closureβ€”mem_closure_of_frequently_of_tendsto
Filter.Eventually.frequently
mem_interior_iff_mem_nhds πŸ“–mathematicalβ€”Set
Set.instMembership
interior
Filter
Filter.instMembership
nhds
β€”mem_interior
mem_nhds_iff
mem_nhds_iff πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
Set.instHasSubset
IsOpen
Set.instMembership
β€”Filter.HasBasis.mem_iff
nhds_basis_opens
mem_of_mem_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Set.instMembershipβ€”mem_nhds_iff
nhdsWithin_mono πŸ“–mathematicalSet
Set.instHasSubset
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhdsWithin
β€”inf_le_inf_left
Filter.principal_mono
nhdsWithin_neBot πŸ“–mathematicalβ€”Filter.NeBot
nhdsWithin
Set.Nonempty
Set
Set.instInter
β€”nhdsWithin.eq_1
Filter.inf_neBot_iff
Filter.mem_principal_self
Set.Nonempty.mono
Set.inter_subset_inter_right
nhds_basis_closeds πŸ“–mathematicalβ€”Filter.HasBasis
Set
nhds
Set.instMembership
IsClosed
Compl.compl
Set.instCompl
β€”Filter.HasBasis.mem_iff
nhds_basis_opens
Function.Surjective.exists
compl_surjective
nhds_basis_opens πŸ“–mathematicalβ€”Filter.HasBasis
Set
nhds
Set.instMembership
IsOpen
β€”nhds_def
Filter.hasBasis_biInf_principal
IsOpen.inter
Set.inter_subset_left
Set.inter_subset_right
Set.mem_univ
isOpen_univ
nhds_basis_opens' πŸ“–mathematicalβ€”Filter.HasBasis
Set
nhds
Filter
Filter.instMembership
IsOpen
β€”IsOpen.mem_nhds_iff
nhds_basis_opens
nhds_bind_nhds πŸ“–mathematicalβ€”Filter.bind
nhds
β€”Filter.ext
eventually_eventually_nhds
nhds_def' πŸ“–mathematicalβ€”nhds
iInf
Filter
Set
Filter.instInfSet
IsOpen
Set.instMembership
Filter.principal
β€”nhds_def
iInf_congr_Prop
iInf_and
nhds_le_of_le πŸ“–mathematicalSet
Set.instMembership
IsOpen
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.principal
nhdsβ€”nhds_def
iInfβ‚‚_le_of_le
nhds_neBot πŸ“–mathematicalβ€”Filter.NeBot
nhds
β€”Filter.neBot_of_le
Filter.pure_neBot
pure_le_nhds
pure_le_nhds πŸ“–mathematicalβ€”Pi.hasLe
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instPure
nhds
β€”Filter.mem_pure
mem_of_mem_nhds
subset_interior_iff_nhds πŸ“–mathematicalβ€”Set
Set.instHasSubset
interior
Filter
Filter.instMembership
nhds
β€”β€”
tendsto_atBot_of_eventually_const πŸ“–mathematicalβ€”Filter.Tendsto
Filter.atBot
nhds
β€”tendsto_atTop_of_eventually_const
tendsto_atTop_nhds πŸ“–mathematicalβ€”Filter.Tendsto
Filter.atTop
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
nhds
Set
Set.instMembership
β€”Filter.HasBasis.tendsto_iff
Filter.atTop_basis
SemilatticeSup.instIsDirectedOrder
nhds_basis_opens
tendsto_atTop_of_eventually_const πŸ“–mathematicalβ€”Filter.Tendsto
Filter.atTop
nhds
β€”Filter.Tendsto.congr'
Filter.EventuallyEq.symm
Filter.Eventually.mono
Filter.eventually_ge_atTop
tendsto_const_nhds
tendsto_const_nhds πŸ“–mathematicalβ€”Filter.Tendsto
nhds
β€”tendsto_nhds
Filter.univ_mem'
tendsto_inf_principal_nhds_iff_of_forall_eq πŸ“–mathematicalβ€”Filter.Tendsto
Filter
Filter.instInf
Filter.principal
nhds
β€”Filter.tendsto_iff_comap
mem_of_mem_nhds
sup_le
sup_le_iff
inf_top_eq
Filter.principal_univ
Set.union_compl_self
Filter.sup_principal
sup_inf_right
le_trans
inf_le_left
tendsto_nhds πŸ“–mathematicalβ€”Filter.Tendsto
nhds
Set
Filter
Filter.instMembership
Set.preimage
β€”all_mem_nhds_filter
Set.preimage_mono
tendsto_nhds_of_eventually_eq πŸ“–mathematicalFilter.EventuallyFilter.Tendsto
nhds
β€”Filter.Tendsto.congr'
Filter.EventuallyEq.symm
tendsto_const_nhds
tendsto_pure_nhds πŸ“–mathematicalβ€”Filter.Tendsto
Filter
Filter.instPure
nhds
β€”Filter.Tendsto.mono_right
Filter.tendsto_pure_pure
pure_le_nhds

---

← Back to Index