Documentation Verification Report

NhdsSet

πŸ“ Source: Mathlib/Topology/NhdsSet.lean

Statistics

MetricCount
Definitions0
Theoremseventually_nhdsSet, self_of_nhdsSet, union, union_nhdsSet, self_of_nhdsSet, nhdsSet_interior, nhdsSet_le_sup, nhdsSet_le_sup', mem_nhdsSet, mem_nhdsSet_self, nhdsSet_eq, nhdsSet_neBot, bUnion_mem_nhdsSet, disjoint_nhdsSet_principal, disjoint_principal_nhdsSet, eventually_nhdsSet_iUnion, eventually_nhdsSet_iUnionβ‚‚, eventually_nhdsSet_iff_exists, eventually_nhdsSet_iff_forall, hasBasis_nhdsSet, lift'_nhdsSet_interior, mem_nhdsSet_empty, mem_nhdsSet_iff_exists, mem_nhdsSet_iff_forall, mem_nhdsSet_interior, monotone_nhdsSet, nhdsSet_diagonal, nhdsSet_empty, nhdsSet_eq_bot_iff, nhdsSet_eq_principal_iff, nhdsSet_iInter_le, nhdsSet_iUnion, nhdsSet_insert, nhdsSet_inter_le, nhdsSet_interior, nhdsSet_le, nhdsSet_mono, nhdsSet_neBot_iff, nhdsSet_sInter_le, nhdsSet_singleton, nhdsSet_union, nhdsSet_univ, nhds_le_nhdsSet, principal_le_nhdsSet, subset_interior_iff_mem_nhdsSet, subset_of_mem_nhdsSet, union_mem_nhdsSet
47
Total47

Filter.Eventually

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_nhdsSet πŸ“–mathematicalFilter.Eventually
nhdsSet
nhdsβ€”eventually_nhdsSet_iff_forall
eventually_nhds
self_of_nhdsSet πŸ“–β€”Filter.Eventually
nhdsSet
Set
Set.instMembership
β€”β€”principal_le_nhdsSet
union πŸ“–mathematicalFilter.Eventually
nhdsSet
Set
Set.instUnion
β€”union_nhdsSet
union_nhdsSet πŸ“–mathematicalβ€”Filter.Eventually
nhdsSet
Set
Set.instUnion
β€”nhdsSet_union
Filter.eventually_sup

Filter.EventuallyEq

Theorems

NameKindAssumesProvesValidatesDepends On
self_of_nhdsSet πŸ“–mathematicalFilter.EventuallyEq
nhdsSet
Set.EqOnβ€”Filter.Eventually.self_of_nhdsSet

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
nhdsSet_interior πŸ“–mathematicalFilter.HasBasis
nhdsSet
interiorβ€”lift'_interior
lift'_nhdsSet_interior

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
nhdsSet_le_sup πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhdsSet
Filter.instSup
Set
Set.instInter
Filter.principal
Compl.compl
Set.instCompl
β€”Set.inter_union_compl
nhdsSet_union
le_imp_le_of_le_of_le
sup_le_sup
le_refl
nhdsSet_mono
Set.inter_subset_right
IsOpen.nhdsSet_eq
isOpen_compl
nhdsSet_le_sup' πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhdsSet
Filter.instSup
Set
Set.instInter
Filter.principal
Compl.compl
Set.instCompl
β€”Set.inter_comm
nhdsSet_le_sup

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
mem_nhdsSet πŸ“–mathematicalIsOpenSet
Filter
Filter.instMembership
nhdsSet
Set.instHasSubset
β€”subset_interior_iff_mem_nhdsSet
interior_eq
mem_nhdsSet_self πŸ“–mathematicalIsOpenSet
Filter
Filter.instMembership
nhdsSet
β€”mem_nhdsSet
Set.Subset.rfl
nhdsSet_eq πŸ“–mathematicalIsOpennhdsSet
Filter.principal
β€”nhdsSet_eq_principal_iff

Set.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
nhdsSet_neBot πŸ“–mathematicalβ€”Set.Nonemptyβ€”nhdsSet_neBot_iff

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
bUnion_mem_nhdsSet πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
nhdsSet
Set.iUnion
Set.instMembership
β€”mem_nhdsSet_iff_forall
Filter.mem_of_superset
Set.subset_iUnionβ‚‚
disjoint_nhdsSet_principal πŸ“–mathematicalβ€”Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhdsSet
Filter.principal
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
closure
β€”disjoint_comm
disjoint_principal_nhdsSet
disjoint_principal_nhdsSet πŸ“–mathematicalβ€”Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
Filter.principal
nhdsSet
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
closure
β€”Filter.disjoint_principal_left
subset_interior_iff_mem_nhdsSet
interior_compl
Set.subset_compl_iff_disjoint_left
eventually_nhdsSet_iUnion πŸ“–mathematicalβ€”Filter.Eventually
nhdsSet
Set.iUnion
β€”nhdsSet_iUnion
eventually_nhdsSet_iUnionβ‚‚ πŸ“–mathematicalβ€”Filter.Eventually
nhdsSet
Set.iUnion
β€”nhdsSet_iUnion
eventually_nhdsSet_iff_exists πŸ“–mathematicalβ€”Filter.Eventually
nhdsSet
IsOpen
Set
Set.instHasSubset
β€”mem_nhdsSet_iff_exists
eventually_nhdsSet_iff_forall πŸ“–mathematicalβ€”Filter.Eventually
nhdsSet
nhds
β€”mem_nhdsSet_iff_forall
hasBasis_nhdsSet πŸ“–mathematicalβ€”Filter.HasBasis
Set
nhdsSet
IsOpen
Set.instHasSubset
β€”β€”
lift'_nhdsSet_interior πŸ“–mathematicalβ€”Filter.lift'
nhdsSet
interior
β€”Filter.HasBasis.lift'_interior_eq_self
hasBasis_nhdsSet
mem_nhdsSet_empty πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhdsSet
Set.instEmptyCollection
β€”nhdsSet_empty
mem_nhdsSet_iff_exists πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhdsSet
IsOpen
Set.instHasSubset
β€”subset_interior_iff_mem_nhdsSet
subset_interior_iff
mem_nhdsSet_iff_forall πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhdsSet
nhds
β€”β€”
mem_nhdsSet_interior πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhdsSet
interior
β€”subset_interior_iff_mem_nhdsSet
Set.Subset.rfl
monotone_nhdsSet πŸ“–mathematicalβ€”Monotone
Set
Filter
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.instPartialOrder
nhdsSet
β€”nhdsSet_mono
nhdsSet_diagonal πŸ“–mathematicalβ€”nhdsSet
Set.diagonal
iSup
Filter
Filter.instSupSet
nhds
β€”nhdsSet.eq_1
Set.range_diag
Set.range_comp
nhdsSet_empty πŸ“–mathematicalβ€”nhdsSet
Set
Set.instEmptyCollection
Bot.bot
Filter
Filter.instBot
β€”IsOpen.nhdsSet_eq
isOpen_empty
Filter.principal_empty
nhdsSet_eq_bot_iff πŸ“–mathematicalβ€”nhdsSet
Bot.bot
Filter
Filter.instBot
Set
Set.instEmptyCollection
β€”nhds_neBot
nhdsSet_empty
nhdsSet_eq_principal_iff πŸ“–mathematicalβ€”nhdsSet
Filter.principal
IsOpen
β€”LE.le.ge_iff_eq'
principal_le_nhdsSet
Filter.le_principal_iff
mem_nhdsSet_iff_forall
isOpen_iff_mem_nhds
nhdsSet_iInter_le πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhdsSet
Set.iInter
iInf
Filter.instInfSet
β€”Monotone.map_iInf_le
monotone_nhdsSet
nhdsSet_iUnion πŸ“–mathematicalβ€”nhdsSet
Set.iUnion
iSup
Filter
Filter.instSupSet
β€”Set.image_iUnion
sSup_iUnion
nhdsSet_insert πŸ“–mathematicalβ€”nhdsSet
Set
Set.instInsert
Filter
Filter.instSup
nhds
β€”Set.insert_eq
nhdsSet_union
nhdsSet_singleton
nhdsSet_inter_le πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhdsSet
Set
Set.instInter
Filter.instInf
β€”Monotone.map_inf_le
monotone_nhdsSet
nhdsSet_interior πŸ“–mathematicalβ€”nhdsSet
interior
Filter.principal
β€”IsOpen.nhdsSet_eq
isOpen_interior
nhdsSet_le πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhdsSet
nhds
β€”β€”
nhdsSet_mono πŸ“–mathematicalSet
Set.instHasSubset
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhdsSet
β€”sSup_le_sSup
Set.image_mono
nhdsSet_neBot_iff πŸ“–mathematicalβ€”Filter.NeBot
nhdsSet
Set.Nonempty
β€”not_iff_not
nhdsSet_sInter_le πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhdsSet
Set.sInter
iInf
Set
Filter.instInfSet
Set.instMembership
β€”Monotone.map_sInf_le
monotone_nhdsSet
nhdsSet_singleton πŸ“–mathematicalβ€”nhdsSet
Set
Set.instSingletonSet
nhds
β€”Set.image_singleton
sSup_singleton
nhdsSet_union πŸ“–mathematicalβ€”nhdsSet
Set
Set.instUnion
Filter
Filter.instSup
β€”Set.image_union
sSup_union
nhdsSet_univ πŸ“–mathematicalβ€”nhdsSet
Set.univ
Top.top
Filter
Filter.instTop
β€”IsOpen.nhdsSet_eq
isOpen_univ
Filter.principal_univ
nhds_le_nhdsSet πŸ“–mathematicalSet
Set.instMembership
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
nhdsSet
β€”le_sSup
Set.mem_image_of_mem
principal_le_nhdsSet πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.principal
nhdsSet
β€”HasSubset.Subset.trans
Set.instIsTransSubset
subset_interior_iff_mem_nhdsSet
interior_subset
subset_interior_iff_mem_nhdsSet πŸ“–mathematicalβ€”Set
Set.instHasSubset
interior
Filter
Filter.instMembership
nhdsSet
β€”β€”
subset_of_mem_nhdsSet πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsSet
Set.instHasSubsetβ€”principal_le_nhdsSet
union_mem_nhdsSet πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsSet
Set.instUnionβ€”nhdsSet_union
Filter.union_mem_sup

---

← Back to Index