Documentation Verification Report

NoetherianSpace

πŸ“ Source: Mathlib/Topology/NoetherianSpace.lean

Statistics

MetricCount
DefinitionsNoetherianSpace
1
Theoremsto_noetherianSpace, compactSpace, discrete, exists_finite_set_closeds_irreducible, exists_finite_set_isClosed_irreducible, exists_finset_irreducible, exists_isOpen_nonempty_subset_irreducibleComponent, exists_open_ne_empty_le_irreducibleComponent, finite, finite_irreducibleComponents, iUnion, isCompact, range, instNoetherianSpaceCofiniteTopology, instWellFoundedLTClosedsOfNoetherianSpace, noetherianSpace_TFAE, noetherianSpace_iff_isCompact, noetherianSpace_iff_of_homeomorph, noetherianSpace_iff_opens, noetherianSpace_of_surjective, noetherianSpace_set_iff, noetherian_univ_iff, noetherianSpace
23
Total24

TopologicalSpace

Definitions

NameCategoryTheorems
NoetherianSpace πŸ“–MathDef
17 mathmath: noetherian_univ_iff, Topology.IsInducing.noetherianSpace, AlgebraicGeometry.noetherianSpace_of_isAffine, AlgebraicGeometry.IsNoetherian.noetherianSpace, noetherianSpace_iff_of_homeomorph, noetherianSpace_of_surjective, instNoetherianSpaceCofiniteTopology, noetherianSpace_set_iff, noetherianSpace_TFAE, noetherianSpace_iff_opens, Finite.to_noetherianSpace, PrimeSpectrum.instNoetherianSpace, AlgebraicGeometry.noetherianSpace_of_isAffineOpen, NoetherianSpace.set, AlgebraicGeometry.instNoetherianSpaceCarrierCarrierCommRingCatSpecOfIsNoetherianRingCarrier, noetherianSpace_iff_isCompact, NoetherianSpace.range

Theorems

NameKindAssumesProvesValidatesDepends On
instNoetherianSpaceCofiniteTopology πŸ“–mathematicalβ€”NoetherianSpace
CofiniteTopology
CofiniteTopology.instTopologicalSpace
β€”CofiniteTopology.nhds_eq
Ultrafilter.le_cofinite_or_eq_pure
Filter.nonempty_of_mem
Ultrafilter.neBot
le_rfl
instWellFoundedLTClosedsOfNoetherianSpace πŸ“–mathematicalβ€”WellFoundedLT
Closeds
Preorder.toLT
PartialOrder.toPreorder
Closeds.instPartialOrder
β€”List.TFAE.out
noetherianSpace_TFAE
noetherianSpace_TFAE πŸ“–mathematicalβ€”List.TFAE
NoetherianSpace
WellFoundedLT
Closeds
Preorder.toLT
PartialOrder.toPreorder
Closeds.instPartialOrder
β€”Function.Surjective.wellFounded_iff
Opens.compl_bijective
OrderIso.lt_iff_lt
noetherianSpace_iff_opens
NoetherianSpace.isCompact
List.tfae_of_cycle
noetherianSpace_iff_isCompact πŸ“–mathematicalβ€”NoetherianSpace
IsCompact
β€”List.TFAE.out
noetherianSpace_TFAE
noetherianSpace_iff_of_homeomorph πŸ“–mathematicalβ€”NoetherianSpaceβ€”noetherianSpace_of_surjective
Homeomorph.continuous
Homeomorph.surjective
noetherianSpace_iff_opens πŸ“–mathematicalβ€”NoetherianSpace
IsCompact
SetLike.coe
Opens
Opens.instSetLike
β€”NoetherianSpace.eq_1
CompleteLattice.wellFoundedGT_iff_isSupFiniteCompact
CompleteLattice.isSupFiniteCompact_iff_all_elements_compact
Opens.isCompactElement_iff
noetherianSpace_of_surjective πŸ“–mathematicalContinuousNoetherianSpaceβ€”noetherianSpace_iff_isCompact
Function.Surjective.forall
Set.image_surjective
IsCompact.image
NoetherianSpace.isCompact
noetherianSpace_set_iff πŸ“–mathematicalβ€”NoetherianSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
IsCompact
β€”Topology.IsEmbedding.isCompact_iff
Topology.IsEmbedding.subtypeVal
noetherian_univ_iff πŸ“–mathematicalβ€”NoetherianSpace
Set.Elem
Set.univ
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”noetherianSpace_iff_of_homeomorph

TopologicalSpace.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
to_noetherianSpace πŸ“–mathematicalβ€”TopologicalSpace.NoetherianSpaceβ€”Finite.wellFounded_of_trans_of_irrefl
TopologicalSpace.Opens.instFinite
instIsTransGt
instIrreflGt

TopologicalSpace.NoetherianSpace

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace πŸ“–mathematicalβ€”CompactSpaceβ€”TopologicalSpace.noetherianSpace_iff_opens
discrete πŸ“–mathematicalβ€”DiscreteTopologyβ€”eq_bot_iff
isClosed_compl_iff
IsCompact.isClosed
isCompact
exists_finite_set_closeds_irreducible πŸ“–mathematicalβ€”Set.Finite
TopologicalSpace.Closeds
IsIrreducible
SetLike.coe
TopologicalSpace.Closeds.instSetLike
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Closeds.instCompleteLattice
β€”wellFounded_lt
TopologicalSpace.instWellFoundedLTClosedsOfNoetherianSpace
eq_or_ne
instIsEmptyFalse
sSup_empty
TopologicalSpace.Closeds.coe_nonempty
sSup_singleton
CanLift.prf
TopologicalSpace.Closeds.instCanLiftSetCoeIsClosed
inf_lt_left
Set.Finite.union
Set.union_subset_iff
sSup_union
inf_sup_left
left_eq_inf
exists_finite_set_isClosed_irreducible πŸ“–mathematicalβ€”Set.Finite
Set
IsClosed
IsIrreducible
Set.sUnion
β€”CanLift.prf
TopologicalSpace.Closeds.instCanLiftSetCoeIsClosed
exists_finite_set_closeds_irreducible
Set.Finite.image
Set.forall_mem_image
TopologicalSpace.Closeds.isClosed'
Set.instCanLiftFinsetCoeFinite
TopologicalSpace.Closeds.coe_finset_sup
Finset.sup_set_eq_biUnion
Set.sUnion_image
Set.iUnion_congr_Prop
exists_finset_irreducible πŸ“–mathematicalβ€”IsIrreducible
SetLike.coe
TopologicalSpace.Closeds
TopologicalSpace.Closeds.instSetLike
Finset
SetLike.instMembership
Finset.instSetLike
Finset.sup
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Closeds.instCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CompleteLattice.toBoundedOrder
β€”Finset.sup_id_eq_sSup
exists_finite_set_closeds_irreducible
exists_isOpen_nonempty_subset_irreducibleComponent πŸ“–mathematicalSet
Set.instMembership
irreducibleComponents
IsOpen
Set.Nonempty
Set.instHasSubset
β€”finite_irreducibleComponents
closure_sUnion_irreducibleComponents_diff_singleton
Set.sUnion_eq_biUnion
isOpen_compl_iff
Set.Finite.isClosed_biUnion
Set.Finite.diff
isClosed_of_mem_irreducibleComponents
Mathlib.Tactic.Contrapose.contrapose₁
closure_empty
Set.nonempty_iff_empty_ne
IsIrreducible.nonempty
HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
Eq.le
exists_open_ne_empty_le_irreducibleComponent πŸ“–mathematicalSet
Set.instMembership
irreducibleComponents
IsOpen
Set.Nonempty
Set.instLE
β€”exists_isOpen_nonempty_subset_irreducibleComponent
finite πŸ“–mathematicalβ€”Finiteβ€”Finite.of_finite_univ
IsCompact.finite_of_discrete
discrete
isCompact
finite_irreducibleComponents πŸ“–mathematicalβ€”Set.Finite
Set
irreducibleComponents
β€”exists_finite_set_isClosed_irreducible
isClosed_univ
Set.Finite.subset
CanLift.prf
Set.instCanLiftFinsetCoeFinite
isIrreducible_iff_sUnion_isClosed
Set.subset_univ
HasSubset.Subset.antisymm
Set.instAntisymmSubset
iUnion πŸ“–mathematicalTopologicalSpace.NoetherianSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.iUnionβ€”Set.inter_eq_left
Set.inter_iUnion
isCompact_iUnion
Set.inter_subset_right
isCompact πŸ“–mathematicalβ€”IsCompactβ€”isCompact_iff_finite_subcover
isOpen_iUnion
IsCompact.elim_finite_subcover
TopologicalSpace.noetherianSpace_iff_opens
Set.Subset.rfl
HasSubset.Subset.trans
Set.instIsTransSubset
range πŸ“–mathematicalContinuousTopologicalSpace.NoetherianSpace
Set.Elem
Set.range
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”TopologicalSpace.noetherianSpace_of_surjective
Set.mem_range_self
Set.rangeFactorization_surjective

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
noetherianSpace πŸ“–mathematicalTopology.IsInducingTopologicalSpace.NoetherianSpaceβ€”TopologicalSpace.noetherianSpace_iff_opens
isCompact_iff
TopologicalSpace.NoetherianSpace.isCompact

---

← Back to Index