OmegaCompletePartialOrder
📁 Source: Mathlib/Topology/OmegaCompletePartialOrder.lean
Statistics
| Metric | Count |
|---|---|
| 3 | |
| 7 | |
| Total | 10 |
Scott
Definitions
| Name | Category | Theorems |
|---|---|---|
IsOpen 📖 | MathDef | |
IsωSup 📖 | MathDef |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isOpen_sUnion 📖 | mathematical | IsOpen | Set.sUnion | — | iSup_Prop_eqCompleteLattice.ωScottContinuous.sSup |
isOpen_univ 📖 | mathematical | — | IsOpenSet.univ | — | CompleteLattice.ωScottContinuous.top |
isωSup_iff_isLUB 📖 | mathematical | — | IsωSupIsLUBPreorder.toLESet.rangeDFunLike.coeOmegaCompletePartialOrder.ChainOmegaCompletePartialOrder.Chain.instFunLikeNat | — | — |
Scott.IsOpen
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
inter 📖 | mathematical | Scott.IsOpen | SetSet.instInter | — | CompleteLattice.ωScottContinuous.inf |
isUpperSet 📖 | mathematical | Scott.IsOpen | IsUpperSetPreorder.toLEPartialOrder.toPreorderOmegaCompletePartialOrder.toPartialOrder | — | OmegaCompletePartialOrder.ωScottContinuous.monotone |
Topology.IsScott
Theorems
(root)
Definitions
| Name | Category | Theorems |
|---|---|---|
OmegaCompletePartialOrder 📖 | CompData | — |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isωSup_ωSup 📖 | mathematical | — | Scott.IsωSupPartialOrder.toPreorderOmegaCompletePartialOrder.toPartialOrderOmegaCompletePartialOrder.ωSup | — | OmegaCompletePartialOrder.le_ωSupOmegaCompletePartialOrder.ωSup_le |
---