Documentation Verification Report

OmegaCompletePartialOrder

📁 Source: Mathlib/Topology/OmegaCompletePartialOrder.lean

Statistics

MetricCount
DefinitionsOmegaCompletePartialOrder, IsOpen, IsωSup
3
Theoremsinter, isUpperSet, isOpen_sUnion, isOpen_univ, isωSup_iff_isLUB, ωScottContinuous_iff_continuous, isωSup_ωSup
7
Total10

Scott

Definitions

NameCategoryTheorems
IsOpen 📖MathDef
1 mathmath: isOpen_univ
IsωSup 📖MathDef
2 mathmath: isωSup_ωSup, isωSup_iff_isLUB

Theorems

NameKindAssumesProvesValidatesDepends On
isOpen_sUnion 📖mathematicalIsOpenSet.sUnioniSup_Prop_eq
CompleteLattice.ωScottContinuous.sSup
isOpen_univ 📖mathematicalIsOpen
Set.univ
CompleteLattice.ωScottContinuous.top
isωSup_iff_isLUB 📖mathematicalIsωSup
IsLUB
Preorder.toLE
Set.range
DFunLike.coe
OmegaCompletePartialOrder.Chain
OmegaCompletePartialOrder.Chain.instFunLikeNat

Scott.IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
inter 📖mathematicalScott.IsOpenSet
Set.instInter
CompleteLattice.ωScottContinuous.inf
isUpperSet 📖mathematicalScott.IsOpenIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
OmegaCompletePartialOrder.ωScottContinuous.monotone

Topology.IsScott

Theorems

NameKindAssumesProvesValidatesDepends On
ωScottContinuous_iff_continuous 📖mathematicalOmegaCompletePartialOrder.ωScottContinuous
CompleteLattice.instOmegaCompletePartialOrder
Prop.instCompleteLattice
Continuous
sierpinskiSpace
OmegaCompletePartialOrder.ωScottContinuous.eq_1
scottContinuousOn_iff_continuous
instUnivSetOfIsUpper
instIsUpperProp
OmegaCompletePartialOrder.Chain.range_pair

(root)

Definitions

NameCategoryTheorems
OmegaCompletePartialOrder 📖CompData

Theorems

NameKindAssumesProvesValidatesDepends On
isωSup_ωSup 📖mathematicalScott.IsωSup
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
OmegaCompletePartialOrder.ωSup
OmegaCompletePartialOrder.le_ωSup
OmegaCompletePartialOrder.ωSup_le

---

← Back to Index