📁 Source: Mathlib/Topology/OpenPartialHomeomorph/Constructions.lean
const
disjointUnion
lift_openEmbedding
pi
piecewise
prod
subtypeRestr
transHomeomorph
const_apply
const_source
const_target
lift_openEmbedding_apply
lift_openEmbedding_source
lift_openEmbedding_symm
lift_openEmbedding_symm_source
lift_openEmbedding_symm_target
lift_openEmbedding_target
lift_openEmbedding_toFun
lift_openEmbedding_trans
lift_openEmbedding_trans_apply
map_subtype_source
pi_apply
pi_source
pi_symm_apply
pi_target
pi_toPartialEquiv
piecewise_apply
piecewise_toPartialEquiv
prod_apply
prod_eq_prod_of_nonempty
prod_eq_prod_of_nonempty'
prod_source
prod_symm
prod_symm_apply
prod_symm_trans_prod
prod_target
prod_toPartialEquiv
prod_trans
refl_prod_refl
subtypeRestr_coe
subtypeRestr_def
subtypeRestr_source
subtypeRestr_symm_apply
subtypeRestr_symm_eqOn
subtypeRestr_symm_eqOn_of_le
subtypeRestr_symm_trans_subtypeRestr
subtypeRestr_target_subset
symm_piecewise
transHomeomorph_apply
transHomeomorph_eq_trans
transHomeomorph_source
transHomeomorph_symm_apply
transHomeomorph_target
transHomeomorph_transHomeomorph
trans_transHomeomorph
chartedSpace_of_discreteTopology_chartAt
ChartedSpace.sum_chartAt_inr
ChartedSpace.sum_chartAt_inl
ChartedSpace.mem_atlas_sum
piChartedSpace_chartAt
FiberBundle.chartedSpace_chartAt
prodChartedSpace_chartAt
TangentBundle.chartAt
extend_prod
IsManifold.mem_maximalAtlas_prod
contDiffGroupoid_prod
TopologicalSpace.Opens.chartAt_eq
TopologicalSpace.Opens.chart_eq'
TopologicalSpace.Opens.chart_eq
StructureGroupoid.trans_restricted
StructureGroupoid.restriction_in_maximalAtlas
StructureGroupoid.subtypeRestr_mem_maximalAtlas
IsOpen
Set
Set.instSingletonSet
toFun'
PartialEquiv.source
toPartialEquiv
PartialEquiv.target
Topology.IsOpenEmbedding
Function.Injective.extend_apply
Topology.IsEmbedding.injective
Topology.IsOpenEmbedding.toIsEmbedding
Set.image
symm
symm_target
Function.extend
Classical.arbitrary
trans
ext
Set.ext
trans_source
Set.mem_preimage
Set.mem_image_of_mem
Set.instMembership
TopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
instTopologicalSpaceSubtype
map_source
TopologicalSpace.Opens.openPartialHomeomorphSubtypeCoe_target
leftInvOn
Subtype.prop
Pi.topologicalSpace
Set.pi
Set.univ
PartialEquiv.pi
IsImage
Set.instInter
frontier
Set.EqOn
Set.piecewise
PartialEquiv.piecewise
instTopologicalSpaceProd
Set.Nonempty
Set.prod_eq_prod_iff_of_nonempty
SProd.sprod
Set.instSProd
PartialEquiv.prod
toPartialEquiv_injective
PartialEquiv.prod_trans
refl
Set.univ_prod_univ
Set.restrict
SetLike.coe
TopologicalSpace.Opens.openPartialHomeomorphSubtypeCoe
Set.preimage
Set.univ_inter
eq_symm_apply
map_target
right_inv
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Set.Elem
Set.inclusion
injOn
symm_source
OpenPartialHomeomorph
eqOnSourceSetoid
restr
isOpen_inter_preimage_symm
TopologicalSpace.Opens.is_open'
ofSet_trans
trans_assoc
EqOnSource.trans'
ofSet_trans'
trans_of_set'
eqOnSource_refl
open_target
symm_trans_self
ofSet.congr_simp
Set.instHasSubset
image_source_eq_target
IsImage.symm
IsImage.inter_eq_of_inter_eq_of_eqOn
IsImage.frontier
IsImage.symm_eqOn_of_inter_eq_of_eqOn
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.toOpenPartialHomeomorph
PartialEquiv.transEquiv_eq_trans
Homeomorph.symm
Homeomorph.trans
Homeomorph.trans_toOpenPartialHomeomorph
---
← Back to Index