| Metric | Count |
DefinitionsDiscreteTopology, IndiscreteTopology, NontrivialTopology, uniqueTopologicalSpace, GenerateOpen, gciGenerateFrom, generateFrom, instCompleteLattice, instPartialOrder, mkOfClosure, mkOfNhds, inhabitedTopologicalSpace, instTopologicalSpaceBool, instTopologicalSpaceEmpty, instTopologicalSpaceFin, instTopologicalSpaceInt, instTopologicalSpaceNat, instTopologicalSpacePEmpty, instTopologicalSpacePUnit, nhdsAdjoint, sierpinskiSpace | 21 |
Theoremscoinduced_le, le_induced, eq_bot, of_continuous_injective, of_finite_of_isClosed_singleton, coinduced_symm, induced_symm, eq_top, isOpen_iff, nhds_eq, of_forall_inseparable, all, cast_continuous, mono, mono, cast_continuous, exists_not_inseparable, ne_top, of_exists_not_inseparable, discreteTopology, eq_top_iff_forall_inseparable, gc_generateFrom, generateFrom_anti, generateFrom_setOf_isOpen, generateFrom_surjective, indiscrete_iff_forall_inseparable, indiscrete_or_nontrivial, isOpen_generateFrom_of_mem, isOpen_top_iff, le_def, le_generateFrom_iff_subset_isOpen, leftInverse_generateFrom, mkOfClosure_sets, ne_top_iff_exists_not_inseparable, nhds_generateFrom, nhds_mkOfNhds, nhds_mkOfNhds_filterBasis, nhds_mkOfNhds_of_hasBasis, nhds_mkOfNhds_single, nontrivial_iff_exists_not_inseparable, not_indiscrete_iff, not_nontrivial_iff, setOf_isOpen_injective, tendsto_nhds_generateFrom_iff, mono, closure_discrete, closure_induced, coinduced_bot, coinduced_compose, coinduced_iSup, coinduced_id, coinduced_le_iff_le_induced, coinduced_mono, coinduced_nhdsAdjoint, coinduced_sSup, coinduced_sup, continuous_Prop, continuous_bot, continuous_coinduced_dom, continuous_coinduced_rng, continuous_discrete_rng, continuous_empty_function, continuous_generateFrom_iff, continuous_iInf_dom, continuous_iInf_rng, continuous_iSup_dom, continuous_iSup_rng, continuous_id_iff_le, continuous_id_of_le, continuous_iff_coinduced_le, continuous_iff_le_induced, continuous_induced_dom, continuous_induced_rng, continuous_inf_dom_left, continuous_inf_dom_right, continuous_inf_rng, continuous_le_dom, continuous_le_rng, continuous_nhdsAdjoint_dom, continuous_of_discreteTopology, continuous_sInf_dom, continuous_sInf_rng, continuous_sSup_dom, continuous_sSup_rng, continuous_sup_dom, continuous_sup_rng_left, continuous_sup_rng_right, continuous_top, denseRange_discrete, dense_discrete, discreteTopology_bot, discreteTopology_iff_forall_isClosed, discreteTopology_iff_forall_isOpen, discreteTopology_iff_isOpen_singleton, discreteTopology_iff_nhds, discreteTopology_iff_nhds_ne, discreteTopology_iff_singleton_mem_nhds, eq_bot_of_singletons_open, forall_open_iff_discrete, gc_coinduced_induced, gc_nhds, generateFrom_iInter, generateFrom_iInter_of_generateFrom_eq_self, generateFrom_iUnion, generateFrom_iUnion_isOpen, generateFrom_insert_empty, generateFrom_insert_of_generateOpen, generateFrom_insert_univ, generateFrom_inter, generateFrom_sUnion, generateFrom_union, generateFrom_union_isOpen, indiscreteTopology_iff, induced_compose, induced_const, induced_generateFrom_eq, induced_iInf, induced_id, induced_iff_nhds_eq, induced_inf, induced_mono, induced_sInf, induced_top, inseparable_top, instDiscreteTopologyBool, instDiscreteTopologyEmpty, instDiscreteTopologyFin, instDiscreteTopologyInt, instDiscreteTopologyNat, instDiscreteTopologyPEmpty, instDiscreteTopologyPUnit, instIndiscreteTopology, instIndiscreteTopologyEmpty, instIndiscreteTopologyOfSubsingleton, instIndiscreteTopologyPEmpty, instIndiscreteTopologyPUnit, isClosed_coinduced, isClosed_discrete, isClosed_iSup_iff, isClosed_induced, isClosed_induced_iff, isClosed_induced_iff', isClosed_sSup_iff, isOpen_coinduced, isOpen_discrete, isOpen_iSup_iff, isOpen_iff_continuous_mem, isOpen_implies_isOpen_iff, isOpen_induced, isOpen_induced_eq, isOpen_induced_iff, isOpen_sSup_iff, isOpen_singleton_nhdsAdjoint, isOpen_singleton_true, isOpen_sup, le_generateFrom, le_iff_nhds, le_induced_generateFrom, le_nhdsAdjoint_iff, le_nhdsAdjoint_iff', le_of_nhds_le_nhds, map_nhds_induced_eq, map_nhds_induced_of_mem, map_nhds_induced_of_surjective, mem_nhds_discrete, mem_nhds_induced, nhds_discrete, nhds_false, nhds_iInf, nhds_induced, nhds_inf, nhds_mono, nhds_nhdsAdjoint, nhds_nhdsAdjoint_of_ne, nhds_nhdsAdjoint_same, nhds_sInf, nhds_top, nhds_true, nontrivialTopology_iff, preimage_nhds_coinduced, setOf_isOpen_iSup, setOf_isOpen_sSup, setOf_isOpen_sup, singletons_open_iff_discrete, tendsto_nhds_Prop, tendsto_nhds_true | 186 |
| Total | 207 |
| Name | Category | Theorems |
GenerateOpen π | CompData | 3 mathmath: Topology.IsUpper.isOpen_iff_generate_Iic_compl, Topology.IsLower.isOpen_iff_generate_Ici_compl, isOpen_iff_generate_intervals
|
gciGenerateFrom π | CompOp | β |
generateFrom π | CompOp | 41 mathmath: generateFrom_insert_of_generateOpen, SecondCountableTopology.mk', tendsto_nhds_generateFrom_iff, generateFrom_sUnion, generateFrom_iUnion_isOpen, generateFrom_union, generateFrom_insert_empty, generateFrom_surjective, ContinuousMap.compactOpen_eq, generateFrom_anti, prod_eq_generateFrom, generateFrom_setOf_isOpen, nhds_generateFrom, le_induced_generateFrom, isOpen_generateFrom_of_mem, generateFrom_iUnion, generateFrom_iInter, pi_eq_generateFrom, continuousOn_isOpen_of_generateFrom, generateFrom_insert_univ, pi_generateFrom_eq, induced_generateFrom_eq, IsTopologicalBasis.eq_generateFrom, gc_generateFrom, LinearOrder.bot_topologicalSpace_eq_generateFrom, prod_generateFrom_generateFrom_eq, exists_countable_generateFrom_Ioi_Iio, generateFrom_union_isOpen, SecondCountableTopology.is_open_generated_countable, OrderTopology.topology_eq_generate_intervals, continuousOn_to_generateFrom_iff, continuous_generateFrom_iff, eq_generateFrom_countableBasis, generateFrom_inter, leftInverse_generateFrom, Dense.topology_eq_generateFrom, ContinuousMap.compactOpen_eq_generateFrom, le_generateFrom_iff_subset_isOpen, le_generateFrom, mkOfClosure_sets, pi_generateFrom_eq_finite
|
instCompleteLattice π | CompOp | 159 mathmath: continuousNeg_iInf, coinduced_bot, continuous_sInf_domβ, PolynormableSpace.sInf, continuous_sup_rng_right, GroupTopology.toTopologicalSpace_iInf, equicontinuousWithinAt_iInf_dom, continuousMul_inf, ContinuousMap.compactOpen_eq_iInf_induced, nhds_sInf, continuousMul_sInf, AddGroupTopology.toTopologicalSpace_inf, setOf_isOpen_iSup, isClosed_iSup_iff, topologicalGroup_iInf, continuous_sup_dom, R1Space.iInf, nhds_iInf, continuous_sSup_dom, isClosed_sSup_iff, induced_inf, inseparable_top, GroupTopology.toTopologicalSpace_inf, eq_induced_by_maps_to_sierpinski, LocallyConvexSpace.inf, continuousVAdd_sInf, generateFrom_sUnion, continuous_inf_dom_leftβ, induced_const, generateFrom_iUnion_isOpen, continuousAdd_inf, eq_top_iff_forall_inseparable, continuous_inf_dom_rightβ, UniformSpace.toTopologicalSpace_top, generateFrom_union, isOpen_sup, AddGroupTopology.toTopologicalSpace_sInf, TopCat.pullback_topology, generateFrom_iInter_of_generateFrom_eq_self, TopCat.colimit_topology, topologicalGroup_inf, Pi.induced_restrict, topologicalAddGroup_inf, induced_topology_pure, continuousNeg_sInf, continuous_sSup_rng, continuousNeg_inf, TopCat.prod_topology, IndiscreteTopology.eq_top, regularSpace_sInf, topologicalAddGroup_sInf, isOpen_top_iff, IsTopologicalBasis.inf_induced, continuous_iInf_rng, continuous_bot, continuousInv_inf, continuous_inf_dom_right, isOpen_sSup_iff, isDenseEmbedding_pure, induced_sInf, TopCat.nonempty_isLimit_iff_eq_induced, SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf, CompletePseudometrizable.iInf, SequentialSpace.iSup, continuousInv_sInf, continuous_top, pullbackTopology_def, secondCountableTopology_iInf, AddGroupTopology.toTopologicalSpace_top, LocallyConvexSpace.iInf, Topology.IsGeneratedBy.sup, continuousSMul_sInf, generateFrom_iUnion, coinduced_sSup, LinearMap.mem_span_iff_continuous_of_finite, nhds_top, UniformOnFun.topologicalSpace_eq, IsTopologicalBasis.inf, GroupTopology.toTopologicalSpace_sInf, continuousAdd_iInf, regularSpace_iInf, continuous_iSup_dom, R1Space.inf, equicontinuous_iInf_dom, UniformSpace.toTopologicalSpace_bot, CompHausLike.LocallyConstant.locallyConstantIsoContinuousMap_hom, generateFrom_iInter, alexandrovDiscrete_iSup, continuous_sInf_dom, UniformSpace.toTopologicalSpace_sInf, GroupTopology.toTopologicalSpace_bot, PolynormableSpace.iInf, nhds_inf, TopCat.coinduced_of_isColimit, topologicalGroup_sInf, isOpen_iSup_iff, AlexandrovDiscrete.sup, Pi.induced_precomp, UniformSpace.toTopologicalSpace_iInf, indiscreteTopology_iff, continuousSMul_inf, continuousAdd_sInf, DeltaGeneratedSpace.sup, LocallyConvexSpace.sInf, RegularSpace.inf, Units.topology_eq_inf, completelyRegularSpace_iInf, continuousSMul_iInf, coinduced_iSup, IsTopologicalBasis.iInf, Pi.induced_restrict_sUnion, discreteTopology_bot, equicontinuousAt_iInf_dom, completelyRegularSpace_inf, isDenseInducing_pure, continuous_iSup_rng, induced_to_pi, continuousMul_iInf, TopCat.induced_of_isLimit, continuous_iInf_dom, continuousVAdd_inf, coinduced_sup, LinearOrder.bot_topologicalSpace_eq_generateFrom, inducing_iInf_to_pi, TopCat.nonempty_isColimit_iff_eq_coinduced, DiscreteTopology.eq_bot, equicontinuousOn_iInf_dom, generateFrom_union_isOpen, UniformSpace.toTopologicalSpace_inf, eq_bot_of_singletons_open, Pi.induced_precomp', continuousInv_iInf, RestrictedProduct.topologicalSpace_eq_iSup, withSeminorms_iInf, continuous_sup_rng_left, induced_top, setOf_isOpen_sSup, continuous_inf_rng, GroupTopology.toTopologicalSpace_top, AddGroupTopology.toTopologicalSpace_iInf, Topology.IsGeneratedBy.iSup, PolishSpace.iInf, induced_iInf, TopCat.limit_topology, generateFrom_inter, R1Space.sInf, PolynormableSpace.inf, SequentialSpace.sup, instIndiscreteTopology, LinearMap.mem_span_iff_continuous, AddUnits.topology_eq_inf, topologicalAddGroup_iInf, DeltaGeneratedSpace.iSup, continuous_inf_dom_left, continuous_sInf_rng, continuousVAdd_iInf, IsTopologicalBasis.iInf_induced, AddGroupTopology.toTopologicalSpace_bot, setOf_isOpen_sup
|
instPartialOrder π | CompOp | 54 mathmath: Topology.lawson_le_scott, le_nhdsAdjoint_iff, Topology.IsGeneratedBy.le_generatedBy, UCompactlyGeneratedSpace.le_compactlyGenerated, deltaGenerated_le, le_of_nhds_le_nhds, t2Space_antitone, UniformConvergenceCLM.topologicalSpace_mono, Measurable.exists_continuous, Topology.upperSet_le_scott, le_def, Topology.IsGeneratedBy.iff_le_generatedBy, generateFrom_anti, Topology.isLawson_le_isScott, le_nhdsAdjoint_iff', le_induced_generateFrom, Topology.scottHausdorff_le_isLawson, t1Space_antitone, DeltaGeneratedSpace.le_deltaGenerated, Topology.scottHausdorff_le_lawson, continuous_iff_le_induced, coinduced_le_iff_le_induced, Topology.IsScott.scottHausdorff_le, Topology.scottHausdorff_le_scott, AddGroupTopology.toTopologicalSpace_le, Topology.scottHausdorff_le_lower, continuous_id_iff_le, induced_topology_le_preorder, le_iff_nhds, Continuous.le_induced, NormedSpace.Dual.dual_norm_topology_le_weak_dual_topology, generatedBy_le, moduleTopology_le, isOpen_implies_isOpen_iff, gc_generateFrom, GroupTopology.toTopologicalSpace_le, gc_nhds, Topology.IsUpperSet.upperSet_le_upper, MeasureTheory.LevyProkhorov.le_convergenceInDistribution, continuous_iff_coinduced_le, MeasureTheory.levyProkhorov_le_convergenceInDistribution, Topology.lawson_le_lower, borel_anti, ContinuousMap.compactOpen_le_induced, UniformSpace.toTopologicalSpace_mono, Topology.IsLower.scottHausdorff_le, TestFunction.topologicalSpace_le_iff, Topology.IsLowerSet.lowerSet_le_lower, gc_coinduced_induced, le_generateFrom_iff_subset_isOpen, le_generateFrom, Opens.IsBasis.le_iff, TestFunction.originalTop_le, Continuous.coinduced_le
|
mkOfClosure π | CompOp | 1 mathmath: mkOfClosure_sets
|
mkOfNhds π | CompOp | 4 mathmath: nhds_mkOfNhds_single, nhds_mkOfNhds_of_hasBasis, nhds_mkOfNhds_filterBasis, nhds_mkOfNhds
|
| Name | Category | Theorems |
DiscreteTopology π | CompData | 142 mathmath: DiscreteContAction.instDiscreteTopologyCarrierObjTopCatForgetβContinuousMap, discreteTopology_iff_locallyInjective, IsDiscrete.to_subtype, discreteTopology_of_isOpen_singleton_zero, PrimeSpectrum.discreteTopology_iff_finite_and_krullDimLE_zero, QuotientGroup.discreteTopology, discreteTopology_subtype_iff', instDiscreteTopologyProd, PrimeSpectrum.discreteTopology_iff_finite_isMaximal_and_sInf_le_nilradical, PrimeSpectrum.instDiscreteTopology, instDiscreteTopologyULift, AddSubgroup.discreteTopology_iff_of_isFiniteRelIndex, ZLattice.comap_discreteTopology, compl_mem_codiscrete_iff, NormedField.discreteTopology_or_nontriviallyNormedField, Subgroup.instDiscreteTopologyQuotientOfContinuousMul, instDiscreteTopologyMatrixOfFinite, instDiscreteTopologyFin, is_bot_adic_iff, discreteTopology_of_isOpen_singleton_one, DiscreteTopology.of_forall_le_norm, discreteTopology_of_noAccPts, Subgroup.discreteTopology, instDiscreteTopologyPUnit, PrimeSpectrum.discreteTopology_of_toLocalization_surjective, instDiscreteTopologyBool, CategoryTheory.PreGaloisCategory.obj_discreteTopology, Units.instDiscreteTopology, NumberField.mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIdealLattice, Matrix.SpecialLinearGroup.instDiscreteTopology, JacobsonSpace.discreteTopology, instDiscreteTopologyInt, DiscreteTopology.of_continuous_injective, AlgebraicGeometry.IsLocallyArtinian.iff_isLocallyNoetherian_and_discreteTopology, QuotientAddGroup.discreteTopology_iff, Valued.discreteTopology_of_forall_lt, DiscreteUniformity.instDiscreteTopology, Subgroup.discrete_iff_cyclic, instDiscreteTopologyPEmpty, ChartedSpace.discreteTopology, AddSubgroup.discrete_iff_addCyclic, Homeomorph.discreteTopology_iff, Continuous.discrete_of_tendsto_cofinite_cocompact, forall_open_iff_discrete, AddSubgroup.discreteTopology, isDiscrete_univ_iff, DiscreteTopology.of_predOrder_succOrder, AddSubgroup.discreteTopology_iff_of_finiteIndex, AlgebraicGeometry.IsLocallyArtinian.discreteTopology, ZMod.instDiscreteTopology, FintypeCat.discreteTopology, instDiscreteTopologyAdditive, QuotientGroup.discreteTopology_iff, AddUnits.instDiscreteTopology, PrimeSpectrum.discreteTopology_iff_toPiLocalization_surjective, IsLocalHomeomorph.comap_discreteTopology, CategoryTheory.PreGaloisCategory.aut_discreteTopology, DomAddAct.instDiscreteTopology, Finite.instDiscreteTopology, DomMulAct.instDiscreteTopology, Subgroup.instDiscreteTopStrictPeriods, AlgebraicGeometry.IsArtinianScheme.iff_isNoetherian_and_discreteTopology, instDiscreteTopologyNat, Topology.IsEmbedding.discreteTopology, ZSpan.instDiscreteTopologySubtypeMemSubmoduleIntSpanRangeCoeBasisRealOfFinite, NumberField.Units.instDiscrete_unitLattice, NumberField.mixedEmbedding.euclidean.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, instDiscreteTopologySubtype, AddSubgroup.instDiscreteTopologyQuotientOfContinuousAdd, Subgroup.discreteTopology_iff_of_isFiniteRelIndex, DiscreteQuotient.instDiscreteTopologyQuotient, discreteTopology_iff_singleton_mem_nhds, instDiscreteTopologyOfAlexandrovDiscreteOfT1Space, discreteTopology_bot, discreteTopology_iff_forall_isClosed, TopCat.instDiscreteTopologyCarrierObjDiscrete, Subgroup.discreteTopology_iff_of_finiteIndex, List.instDiscreteTopology, AddSubgroup.instDiscreteTopologyZMultiples, AlgebraicGeometry.IsLocallyArtinian.discreteTopology_of_isAffine, NumberField.mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, instDiscreteTopologySignType, discreteTopology_subtype_iff, Valued.discreteTopology_of_forall_map_eq_one, PeriodPair.instDiscreteTopologySubtypeComplexMemSubmoduleIntLattice, IsLocalHomeomorphOn.discreteTopology_image_iff, DiscreteTopology.of_finite_of_isClosed_singleton, MulOpposite.instDiscreteTopology, ZSpan.instDiscreteTopologySubtypeMemAddSubgroupToAddSubgroupIntSpanRangeCoeBasisRealOfFinite, discreteTopology_iff_forall_isOpen, discreteTopology_of_discrete_uniformity, DiscreteTopology.of_forall_le_dist, IsLocalHomeomorphOn.discreteTopology_of_image, OrderDual.instDiscreteTopology, NormedField.discreteTopology_of_bddAbove_range_norm, instDiscreteTopologySubtypeMemSubmoduleIntComap, Int.instDiscreteTopologySubtypeRealMemAddSubgroupZmultiples, DiscreteTopology.of_subset, Homeomorph.discreteTopology, FintypeCatDiscrete.instDiscreteTopologyCarrier, Subsingleton.discreteTopology, Algebra.QuasiFinite.discreteTopology_primeSpectrum, isDiscrete_iff_discreteTopology, krullTopology_discreteTopology_of_finiteDimensional, exists_infinite_discreteTopology, IsLocalHomeomorph.discreteTopology_range_iff, AddSubgroup.Commensurable.discreteTopology_iff, discreteTopology_iff_isOpen_singleton, ZSpan.discreteTopology_pi_basisFun, instDiscreteTopologyMultiplicative, AddOpposite.instDiscreteTopology, discreteTopology_union, QuotientAddGroup.discreteTopology, Matrix.SpecialLinearGroup.discreteSpecialLinearGroupIntRange, instDiscreteTopologyZerothHomotopy, DiscreteTopology.preimage_of_continuous_injective, discreteTopology_iff_isOpen_singleton_zero, discreteTopology_iff_nhds_ne, TopologicalSpace.NoetherianSpace.discrete, AddAction.IsPretransitive.discreteTopology_iff, MulAction.IsPretransitive.discreteTopology_iff, SetLike.isDiscrete_iff_discreteTopology, instDiscreteTopologyOfFiniteOfJacobsonSpace, PNat.instDiscreteTopology, IsEvenlyCovered.discreteTopology_fiber, Subgroup.instDiscreteTopologyZMultiples, IsLocalHomeomorph.discreteTopology_iff_of_surjective, Subgroup.instDiscreteTopPeriods, Subgroup.Commensurable.discreteTopology_iff, discreteTopology_iff_isOpen_singleton_one, NormedSpace.discreteTopology_zmultiples, Hamming.instDiscreteTopology, Subgroup.IsArithmetic.discreteTopology, singletons_open_iff_discrete, instDiscreteTopologyConnectedComponentsOfLocallyConnectedSpace, instDiscreteTopologyEmpty, discreteTopology_iff_nhds, instDiscreteTopologySubtypeGeneralLinearGroupMemSubgroupAdjoinNegOneOfIsTopologicalRingOfT2Space, PrimeSpectrum.discreteTopology_iff_toPiLocalization_bijective, discreteTopology_iff_orderTopology_of_pred_succ, DiscreteTopology.of_forall_le_norm', Sum.discreteTopology
|
IndiscreteTopology π | CompData | 25 mathmath: Homeomorph.indiscreteTopology_iff, IndiscreteTopology.of_forall_nnnorm_eq_zero, instIndiscreteTopologyPUnit, indiscreteTopology_iff_forall_norm_eq_zero, IndiscreteTopology.of_forall_inseparable, indiscreteTopology_iff_forall_nnnorm_eq_zero, TopologicalSpace.indiscrete_or_nontrivial, indiscreteTopology_iff_forall_nnnorm_eq_zero', TopologicalSpace.not_indiscrete_iff, indiscreteTopology_iff_forall_norm_eq_zero', TopologicalSpace.not_nontrivial_iff, Topology.IsInducing.indiscreteTopology, SeparationQuotient.inseparableSetoid_eq_top_iff, instIndiscreteTopologyPEmpty, EMetric.subsingleton_iff_indiscreteTopology, IndiscreteTopology.of_forall_nnnorm_eq_zero', instIndiscreteTopologyOfSubsingleton, indiscreteTopology_iff, IndiscreteTopology.of_forall_norm_eq_zero', IndiscreteTopology.of_forall_norm_eq_zero, instIndiscreteTopologyEmpty, TopologicalSpace.indiscrete_iff_forall_inseparable, Homeomorph.indiscreteTopology, SeparationQuotient.subsingleton_iff, instIndiscreteTopology
|
NontrivialTopology π | CompData | 20 mathmath: NontrivialTopology.of_exists_norm_ne_zero', Homeomorph.nontrivialTopology_iff, nontrivialTopology_iff_exists_nnnorm_ne_zero, Topology.IsInducing.nontrivialTopology, TopologicalSpace.indiscrete_or_nontrivial, TopologicalSpace.not_indiscrete_iff, TopologicalSpace.nontrivial_iff_exists_not_inseparable, TopologicalSpace.not_nontrivial_iff, nontrivialTopology_iff_exists_nnnorm_ne_zero', SeparationQuotient.nontrivial_iff, NontrivialTopology.of_exists_norm_ne_zero, nontrivialTopology_iff_exists_norm_ne_zero, Homeomorph.nontrivialTopology, NontrivialTopology.of_exists_nnnorm_ne_zero, EMetric.nontrivial_iff_nontrivialTopology, nontrivialTopology_iff_exists_norm_ne_zero', NontrivialTopology.of_exists_nnnorm_ne_zero', EMetric.instNontrivialTopologyOfNontrivial, nontrivialTopology_iff, NontrivialTopology.of_exists_not_inseparable
|
inhabitedTopologicalSpace π | CompOp | β |
instTopologicalSpaceBool π | CompOp | 77 mathmath: Profinite.NobelingProof.injective_Οs', continuousOn_boolIndicator_iff_isClopen, Profinite.NobelingProof.Products.span_nil_eq_top, Profinite.NobelingProof.GoodProducts.linearIndependent_iff_union_smaller, Profinite.NobelingProof.coe_Οs, Profinite.NobelingProof.instSubsingletonLocallyConstantElemForallBoolEmptyCollectionSetInt, Profinite.NobelingProof.Products.max_eq_eval, Profinite.NobelingProof.Products.eval_Οs, Profinite.NobelingProof.GoodProducts.injective, Profinite.NobelingProof.GoodProducts.equiv_toFun_eq_eval, Profinite.NobelingProof.Products.eval_Οs', Profinite.NobelingProof.GoodProducts.span_sum, Profinite.NobelingProof.GoodProducts.range_equiv_factorization, Profinite.NobelingProof.fin_comap_jointlySurjective, exists_retractionCantorSet, Profinite.NobelingProof.GoodProducts.spanFin, Profinite.NobelingProof.succ_exact, Profinite.NobelingProof.GoodProducts.smaller_factorization, Profinite.NobelingProof.Οs'_apply_apply, instDiscreteTopologyBool, Profinite.NobelingProof.Products.eval_eq, Profinite.NobelingProof.Products.evalFacProps, continuous_bool_rng, continuous_isRight, Profinite.NobelingProof.continuous_swapTrue, Profinite.NobelingProof.iso_map_bijective, Profinite.NobelingProof.Products.eval_Οs_image', Profinite.NobelingProof.factors_prod_eq_basis_of_ne, Profinite.NobelingProof.continuous_projRestrict, Profinite.NobelingProof.continuous_CC'β, exists_nat_bool_continuous_surjective_of_compact, Profinite.NobelingProof.GoodProducts.span, Profinite.NobelingProof.isClosed_C0, Profinite.NobelingProof.GoodProducts.linearIndependent_iff_smaller, Profinite.NobelingProof.GoodProducts.linearIndependent_iff_sum, Perfect.exists_nat_bool_injection, Profinite.NobelingProof.e_mem_of_eq_true, Profinite.NobelingProof.Οs_apply_apply, Profinite.NobelingProof.GoodProducts.finsuppSum_mem_span_eval, Profinite.NobelingProof.GoodProducts.linearIndependent, Profinite.NobelingProof.GoodProducts.square_commutes, Profinite.NobelingProof.spanFinBasis.span, continuous_boolIndicator_iff_isClopen, Profinite.NobelingProof.isClosed_proj, Profinite.NobelingProof.isClosed_C', IsClosed.exists_nat_bool_injection_of_not_countable, Profinite.NobelingProof.continuous_projRestricts, Profinite.NobelingProof.GoodProducts.smaller_mono, Profinite.NobelingProof.GoodProducts.linearIndependentEmpty, cantorToHilbert_continuous, Profinite.NobelingProof.GoodProducts.span_iff_products, Profinite.NobelingProof.GoodProducts.sum_equiv_comp_eval_eq_elim, Profinite.NobelingProof.CC_comp_zero, Profinite.NobelingProof.eval_eq_ΟJ, Profinite.NobelingProof.continuous_CC'β, Profinite.NobelingProof.Products.evalFacProp, Profinite.NobelingProof.Products.evalCons, Profinite.NobelingProof.one_sub_e_mem_of_false, Profinite.NobelingProof.injective_Οs, Profinite.Nobeling.isClosedEmbedding, Profinite.NobelingProof.coe_Οs', Profinite.NobelingProof.continuous_proj, Profinite.NobelingProof.GoodProducts.range_equiv_smaller_toFun_bijective, continuous_isLeft, Profinite.NobelingProof.list_prod_apply, Bool.borelSpace, Profinite.NobelingProof.GoodProducts.linearIndependent_iff_range, Profinite.NobelingProof.GoodProducts.max_eq_eval, Profinite.NobelingProof.GoodProducts.linearIndependentSingleton, Profinite.NobelingProof.Products.eval_Οs_image, Profinite.NobelingProof.isClosed_C1, Real.fromBinary_continuous, Profinite.NobelingProof.factors_prod_eq_basis, Profinite.NobelingProof.factors_prod_eq_basis_of_eq, Profinite.NobelingProof.GoodProducts.union, Profinite.NobelingProof.GoodProducts.max_eq_eval_unapply, Profinite.NobelingProof.succ_mono
|
instTopologicalSpaceEmpty π | CompOp | 3 mathmath: Empty.borelSpace, instIndiscreteTopologyEmpty, instDiscreteTopologyEmpty
|
instTopologicalSpaceFin π | CompOp | 3 mathmath: ContinuousMap.exists_finite_approximation_of_mem_nhds_diagonal, instDiscreteTopologyFin, Real.continuous_ofDigits
|
instTopologicalSpaceInt π | CompOp | 15 mathmath: Int.borelSpace, AddGroup.continuousSMul_int, Int.cast_continuous, continuousAt_toIocDiv, instDiscreteTopologyInt, Int.isClosedEmbedding_coe_real, Matrix.SpecialLinearGroup.isClosedEmbedding_mapGLInt, instNoncompactSpaceInt, continuousWithinAt_toIocDiv_Iic, continuousAt_toIcoDiv, continuousOn_toIocDiv, continuousOn_toIcoDiv, continuousWithinAt_toIcoDiv_Ici, Int.isClosedEmbedding_coe_rat, Complex.closedEmbedding_intCast
|
instTopologicalSpaceNat π | CompOp | 22 mathmath: exists_nat_nat_continuous_surjective_of_completeSpace, LightProfinite.continuous_iff_convergent, AddMonoid.continuousSMul_nat, Nat.instNoncompactSpace, Nat.cast_continuous, LightProfinite.instMetrizableSpaceOnePointNat, Nat.isClosedEmbedding_coe_rat, instDiscreteTopologyNat, PolishSpace.exists_nat_nat_continuous_surjective, TopologicalSpace.exists_isInducing_l_infty, exists_topology_isEmbedding_nat, ENat.isEmbedding_natCast, Nat.isClosedEmbedding_coe_real, PadicInt.mahlerEquiv_apply, TopologicalSpace.exists_embedding_l_infty, MeasureTheory.AnalyticSet_def, PadicInt.mahlerEquiv_symm_apply, List.continuousAt_length, OnePoint.continuous_iff_from_nat, LightProfinite.isClosedEmbedding_natUnionInftyEmbedding, ENat.isOpenEmbedding_natCast, Nat.borelSpace
|
instTopologicalSpacePEmpty π | CompOp | 5 mathmath: AlgebraicGeometry.Scheme.emptyTo_base, instDiscreteTopologyPEmpty, instIndiscreteTopologyPEmpty, AlgebraicGeometry.Scheme.emptyTo_c_app, AlgebraicGeometry.Scheme.empty_presheaf
|
instTopologicalSpacePUnit π | CompOp | 47 mathmath: LightCondensed.isoFinYonedaComponents_hom_apply, condensedSetToTopCat_obj_carrier, LightCondSet.continuous_coinducingCoprod, CompHausLike.LocallyConstant.adjunction_counit, LightCondSet.topCatAdjunctionUnit_val_app_apply, Unit.borelSpace, instIndiscreteTopologyPUnit, CompHausLike.LocallyConstant.counitApp_app, Condensed.isoFinYonedaComponents_hom_apply, CondensedSet.topCatAdjunctionCounit_hom_apply, CompHausLike.LocallyConstant.incl_of_counitAppApp, instDiscreteTopologyPUnit, Path.instSubsingletonPUnitUnit, ContractibleSpace.hequiv_unit, FundamentalGroupoid.instSubsingletonHomPUnit, Homeomorph.prodPUnit_apply, LightCondensed.isoFinYonedaComponents_inv_comp, CondensedSet.topCatAdjunctionUnit_val_app_apply, LightCondensed.isoLocallyConstantOfIsColimit_inv, Condensed.isoLocallyConstantOfIsColimit_inv, CompHausLike.LocallyConstant.adjunction_left_triangle, Condensed.isoFinYonedaComponents_inv_comp, CondensedSet.continuous_coinducingCoprod, TopCat.Presheaf.isSheaf_on_punit_of_isTerminal, skyscraperPresheaf_eq_pushforward, FundamentalGroupoid.punitEquivDiscretePUnit_unitIso, CondensedSet.topCatAdjunctionUnit_val_app, LightCondensed.underlying_obj, ContractibleSpace.hequiv_unit', TopCat.Presheaf.isSheaf_on_punit_iff_isTerminal, lightCondSetToTopCat_obj_carrier, CompHausLike.LocallyConstant.instIsIsoFunctorTypeUnitSheafCoherentTopologyAdjunction, CompHausLike.LocallyConstant.counit_app_val, CompHausLike.LocallyConstant.unit_app, LightCondSet.topCatAdjunctionUnit_val_app, Condensed.underlying_obj, CompHausLike.LocallyConstant.incl_comap, FundamentalGroupoid.punitEquivDiscretePUnit_counitIso, CondensedSet.toTopCatMap_hom_apply, LightCondensed.underlying_map, FundamentalGroupoid.punitEquivDiscretePUnit_inverse, Condensed.underlying_map, LightCondSet.toTopCatMap_hom_apply, Topology.IsGeneratedBy.instPUnit, Homeomorph.coe_punitProd, CompHausLike.LocallyConstant.adjunction_unit, FundamentalGroupoid.punitEquivDiscretePUnit_functor
|
nhdsAdjoint π | CompOp | 9 mathmath: le_nhdsAdjoint_iff, nhds_nhdsAdjoint_of_ne, coinduced_nhdsAdjoint, nhds_nhdsAdjoint, le_nhdsAdjoint_iff', isOpen_singleton_nhdsAdjoint, nhds_nhdsAdjoint_same, gc_nhds, continuous_nhdsAdjoint_dom
|
sierpinskiSpace π | CompOp | 15 mathmath: isOpen_iff_continuous_mem, TopologicalSpace.eq_induced_by_maps_to_sierpinski, nhds_false, nhds_true, tendsto_nhds_Prop, TopologicalSpace.productOfMemOpens_isEmbedding, instIsUpperProp, TopologicalSpace.productOfMemOpens_injective, isOpen_singleton_true, TopologicalSpace.productOfMemOpens_isInducing, instCompletelyNormalSpaceProp, Topology.IsScott.ΟScottContinuous_iff_continuous, continuous_Prop, tendsto_nhds_true, Topology.IsUpperSet.instProp
|