Documentation Verification Report

Order

πŸ“ Source: Mathlib/Topology/Order.lean

Statistics

MetricCount
DefinitionsDiscreteTopology, IndiscreteTopology, NontrivialTopology, uniqueTopologicalSpace, GenerateOpen, gciGenerateFrom, generateFrom, instCompleteLattice, instPartialOrder, mkOfClosure, mkOfNhds, inhabitedTopologicalSpace, instTopologicalSpaceBool, instTopologicalSpaceEmpty, instTopologicalSpaceFin, instTopologicalSpaceInt, instTopologicalSpaceNat, instTopologicalSpacePEmpty, instTopologicalSpacePUnit, nhdsAdjoint, sierpinskiSpace
21
Theoremscoinduced_le, le_induced, eq_bot, of_continuous_injective, of_finite_of_isClosed_singleton, coinduced_symm, induced_symm, eq_top, isOpen_iff, nhds_eq, of_forall_inseparable, all, cast_continuous, mono, mono, cast_continuous, exists_not_inseparable, ne_top, of_exists_not_inseparable, discreteTopology, eq_top_iff_forall_inseparable, gc_generateFrom, generateFrom_anti, generateFrom_setOf_isOpen, generateFrom_surjective, indiscrete_iff_forall_inseparable, indiscrete_or_nontrivial, isOpen_generateFrom_of_mem, isOpen_top_iff, le_def, le_generateFrom_iff_subset_isOpen, leftInverse_generateFrom, mkOfClosure_sets, ne_top_iff_exists_not_inseparable, nhds_generateFrom, nhds_mkOfNhds, nhds_mkOfNhds_filterBasis, nhds_mkOfNhds_of_hasBasis, nhds_mkOfNhds_single, nontrivial_iff_exists_not_inseparable, not_indiscrete_iff, not_nontrivial_iff, setOf_isOpen_injective, tendsto_nhds_generateFrom_iff, mono, closure_discrete, closure_induced, coinduced_bot, coinduced_compose, coinduced_iSup, coinduced_id, coinduced_le_iff_le_induced, coinduced_mono, coinduced_nhdsAdjoint, coinduced_sSup, coinduced_sup, continuous_Prop, continuous_bot, continuous_coinduced_dom, continuous_coinduced_rng, continuous_discrete_rng, continuous_empty_function, continuous_generateFrom_iff, continuous_iInf_dom, continuous_iInf_rng, continuous_iSup_dom, continuous_iSup_rng, continuous_id_iff_le, continuous_id_of_le, continuous_iff_coinduced_le, continuous_iff_le_induced, continuous_induced_dom, continuous_induced_rng, continuous_inf_dom_left, continuous_inf_dom_right, continuous_inf_rng, continuous_le_dom, continuous_le_rng, continuous_nhdsAdjoint_dom, continuous_of_discreteTopology, continuous_sInf_dom, continuous_sInf_rng, continuous_sSup_dom, continuous_sSup_rng, continuous_sup_dom, continuous_sup_rng_left, continuous_sup_rng_right, continuous_top, denseRange_discrete, dense_discrete, discreteTopology_bot, discreteTopology_iff_forall_isClosed, discreteTopology_iff_forall_isOpen, discreteTopology_iff_isOpen_singleton, discreteTopology_iff_nhds, discreteTopology_iff_nhds_ne, discreteTopology_iff_singleton_mem_nhds, eq_bot_of_singletons_open, forall_open_iff_discrete, gc_coinduced_induced, gc_nhds, generateFrom_iInter, generateFrom_iInter_of_generateFrom_eq_self, generateFrom_iUnion, generateFrom_iUnion_isOpen, generateFrom_insert_empty, generateFrom_insert_of_generateOpen, generateFrom_insert_univ, generateFrom_inter, generateFrom_sUnion, generateFrom_union, generateFrom_union_isOpen, indiscreteTopology_iff, induced_compose, induced_const, induced_generateFrom_eq, induced_iInf, induced_id, induced_iff_nhds_eq, induced_inf, induced_mono, induced_sInf, induced_top, inseparable_top, instDiscreteTopologyBool, instDiscreteTopologyEmpty, instDiscreteTopologyFin, instDiscreteTopologyInt, instDiscreteTopologyNat, instDiscreteTopologyPEmpty, instDiscreteTopologyPUnit, instIndiscreteTopology, instIndiscreteTopologyEmpty, instIndiscreteTopologyOfSubsingleton, instIndiscreteTopologyPEmpty, instIndiscreteTopologyPUnit, isClosed_coinduced, isClosed_discrete, isClosed_iSup_iff, isClosed_induced, isClosed_induced_iff, isClosed_induced_iff', isClosed_sSup_iff, isOpen_coinduced, isOpen_discrete, isOpen_iSup_iff, isOpen_iff_continuous_mem, isOpen_implies_isOpen_iff, isOpen_induced, isOpen_induced_eq, isOpen_induced_iff, isOpen_sSup_iff, isOpen_singleton_nhdsAdjoint, isOpen_singleton_true, isOpen_sup, le_generateFrom, le_iff_nhds, le_induced_generateFrom, le_nhdsAdjoint_iff, le_nhdsAdjoint_iff', le_of_nhds_le_nhds, map_nhds_induced_eq, map_nhds_induced_of_mem, map_nhds_induced_of_surjective, mem_nhds_discrete, mem_nhds_induced, nhds_discrete, nhds_false, nhds_iInf, nhds_induced, nhds_inf, nhds_mono, nhds_nhdsAdjoint, nhds_nhdsAdjoint_of_ne, nhds_nhdsAdjoint_same, nhds_sInf, nhds_top, nhds_true, nontrivialTopology_iff, preimage_nhds_coinduced, setOf_isOpen_iSup, setOf_isOpen_sSup, setOf_isOpen_sup, singletons_open_iff_discrete, tendsto_nhds_Prop, tendsto_nhds_true
186
Total207

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
coinduced_le πŸ“–mathematicalContinuousTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
TopologicalSpace.coinduced
β€”continuous_def
le_induced πŸ“–mathematicalContinuousTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
TopologicalSpace.induced
β€”coinduced_le_iff_le_induced
coinduced_le

DiscreteTopology

Theorems

NameKindAssumesProvesValidatesDepends On
eq_bot πŸ“–mathematicalβ€”Bot.bot
TopologicalSpace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”β€”
of_continuous_injective πŸ“–mathematicalContinuousDiscreteTopologyβ€”discreteTopology_iff_forall_isOpen
IsOpen.preimage
isOpen_discrete
Function.Injective.preimage_image
of_finite_of_isClosed_singleton πŸ“–mathematicalIsClosed
Set
Set.instSingletonSet
DiscreteTopologyβ€”discreteTopology_iff_forall_isClosed
isClosed_iUnion_of_finite
Subtype.finite
Set.iUnion_of_singleton_coe

Equiv

Theorems

NameKindAssumesProvesValidatesDepends On
coinduced_symm πŸ“–mathematicalβ€”TopologicalSpace.coinduced
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
TopologicalSpace.induced
β€”induced_symm
induced_symm πŸ“–mathematicalβ€”TopologicalSpace.induced
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
TopologicalSpace.coinduced
β€”TopologicalSpace.ext
isOpen_induced_iff
isOpen_coinduced
preimage_eq_iff_eq_image
image_symm_eq_preimage

IndiscreteTopology

Theorems

NameKindAssumesProvesValidatesDepends On
eq_top πŸ“–mathematicalβ€”Top.top
TopologicalSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”β€”
isOpen_iff πŸ“–mathematicalβ€”IsOpen
Set
Set.instEmptyCollection
Set.univ
β€”eq_top
Set.inter_self
Set.inter_univ
Set.inter_empty
Set.sUnion_mem_empty_univ
isOpen_empty
isOpen_univ
nhds_eq πŸ“–mathematicalβ€”nhds
Top.top
Filter
Filter.instTop
β€”eq_top
nhds_top
of_forall_inseparable πŸ“–mathematicalInseparableIndiscreteTopologyβ€”TopologicalSpace.ext_nhds
top_unique
mem_of_mem_nhds
nhds_top

Inseparable

Theorems

NameKindAssumesProvesValidatesDepends On
all πŸ“–mathematicalβ€”Inseparableβ€”IndiscreteTopology.nhds_eq

Int

Theorems

NameKindAssumesProvesValidatesDepends On
cast_continuous πŸ“–mathematicalβ€”Continuous
instTopologicalSpaceInt
β€”continuous_of_discreteTopology
instDiscreteTopologyInt

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
mono πŸ“–mathematicalTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
IsClosedβ€”isOpen_compl_iff
IsOpen.mono
isOpen_compl

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
mono πŸ“–β€”IsOpen
TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
β€”β€”β€”

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
cast_continuous πŸ“–mathematicalβ€”Continuous
instTopologicalSpaceNat
β€”continuous_of_discreteTopology
instDiscreteTopologyNat

NontrivialTopology

Theorems

NameKindAssumesProvesValidatesDepends On
exists_not_inseparable πŸ“–mathematicalβ€”Inseparableβ€”TopologicalSpace.nontrivial_iff_exists_not_inseparable
ne_top πŸ“–β€”β€”β€”β€”β€”
of_exists_not_inseparable πŸ“–mathematicalInseparableNontrivialTopologyβ€”TopologicalSpace.nontrivial_iff_exists_not_inseparable

Subsingleton

Definitions

NameCategoryTheorems
uniqueTopologicalSpace πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
discreteTopology πŸ“–mathematicalβ€”DiscreteTopologyβ€”Unique.eq_default

TopologicalSpace

Definitions

NameCategoryTheorems
GenerateOpen πŸ“–CompData
3 mathmath: Topology.IsUpper.isOpen_iff_generate_Iic_compl, Topology.IsLower.isOpen_iff_generate_Ici_compl, isOpen_iff_generate_intervals
gciGenerateFrom πŸ“–CompOpβ€”
generateFrom πŸ“–CompOp
41 mathmath: generateFrom_insert_of_generateOpen, SecondCountableTopology.mk', tendsto_nhds_generateFrom_iff, generateFrom_sUnion, generateFrom_iUnion_isOpen, generateFrom_union, generateFrom_insert_empty, generateFrom_surjective, ContinuousMap.compactOpen_eq, generateFrom_anti, prod_eq_generateFrom, generateFrom_setOf_isOpen, nhds_generateFrom, le_induced_generateFrom, isOpen_generateFrom_of_mem, generateFrom_iUnion, generateFrom_iInter, pi_eq_generateFrom, continuousOn_isOpen_of_generateFrom, generateFrom_insert_univ, pi_generateFrom_eq, induced_generateFrom_eq, IsTopologicalBasis.eq_generateFrom, gc_generateFrom, LinearOrder.bot_topologicalSpace_eq_generateFrom, prod_generateFrom_generateFrom_eq, exists_countable_generateFrom_Ioi_Iio, generateFrom_union_isOpen, SecondCountableTopology.is_open_generated_countable, OrderTopology.topology_eq_generate_intervals, continuousOn_to_generateFrom_iff, continuous_generateFrom_iff, eq_generateFrom_countableBasis, generateFrom_inter, leftInverse_generateFrom, Dense.topology_eq_generateFrom, ContinuousMap.compactOpen_eq_generateFrom, le_generateFrom_iff_subset_isOpen, le_generateFrom, mkOfClosure_sets, pi_generateFrom_eq_finite
instCompleteLattice πŸ“–CompOp
159 mathmath: continuousNeg_iInf, coinduced_bot, continuous_sInf_domβ‚‚, PolynormableSpace.sInf, continuous_sup_rng_right, GroupTopology.toTopologicalSpace_iInf, equicontinuousWithinAt_iInf_dom, continuousMul_inf, ContinuousMap.compactOpen_eq_iInf_induced, nhds_sInf, continuousMul_sInf, AddGroupTopology.toTopologicalSpace_inf, setOf_isOpen_iSup, isClosed_iSup_iff, topologicalGroup_iInf, continuous_sup_dom, R1Space.iInf, nhds_iInf, continuous_sSup_dom, isClosed_sSup_iff, induced_inf, inseparable_top, GroupTopology.toTopologicalSpace_inf, eq_induced_by_maps_to_sierpinski, LocallyConvexSpace.inf, continuousVAdd_sInf, generateFrom_sUnion, continuous_inf_dom_leftβ‚‚, induced_const, generateFrom_iUnion_isOpen, continuousAdd_inf, eq_top_iff_forall_inseparable, continuous_inf_dom_rightβ‚‚, UniformSpace.toTopologicalSpace_top, generateFrom_union, isOpen_sup, AddGroupTopology.toTopologicalSpace_sInf, TopCat.pullback_topology, generateFrom_iInter_of_generateFrom_eq_self, TopCat.colimit_topology, topologicalGroup_inf, Pi.induced_restrict, topologicalAddGroup_inf, induced_topology_pure, continuousNeg_sInf, continuous_sSup_rng, continuousNeg_inf, TopCat.prod_topology, IndiscreteTopology.eq_top, regularSpace_sInf, topologicalAddGroup_sInf, isOpen_top_iff, IsTopologicalBasis.inf_induced, continuous_iInf_rng, continuous_bot, continuousInv_inf, continuous_inf_dom_right, isOpen_sSup_iff, isDenseEmbedding_pure, induced_sInf, TopCat.nonempty_isLimit_iff_eq_induced, SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf, CompletePseudometrizable.iInf, SequentialSpace.iSup, continuousInv_sInf, continuous_top, pullbackTopology_def, secondCountableTopology_iInf, AddGroupTopology.toTopologicalSpace_top, LocallyConvexSpace.iInf, Topology.IsGeneratedBy.sup, continuousSMul_sInf, generateFrom_iUnion, coinduced_sSup, LinearMap.mem_span_iff_continuous_of_finite, nhds_top, UniformOnFun.topologicalSpace_eq, IsTopologicalBasis.inf, GroupTopology.toTopologicalSpace_sInf, continuousAdd_iInf, regularSpace_iInf, continuous_iSup_dom, R1Space.inf, equicontinuous_iInf_dom, UniformSpace.toTopologicalSpace_bot, CompHausLike.LocallyConstant.locallyConstantIsoContinuousMap_hom, generateFrom_iInter, alexandrovDiscrete_iSup, continuous_sInf_dom, UniformSpace.toTopologicalSpace_sInf, GroupTopology.toTopologicalSpace_bot, PolynormableSpace.iInf, nhds_inf, TopCat.coinduced_of_isColimit, topologicalGroup_sInf, isOpen_iSup_iff, AlexandrovDiscrete.sup, Pi.induced_precomp, UniformSpace.toTopologicalSpace_iInf, indiscreteTopology_iff, continuousSMul_inf, continuousAdd_sInf, DeltaGeneratedSpace.sup, LocallyConvexSpace.sInf, RegularSpace.inf, Units.topology_eq_inf, completelyRegularSpace_iInf, continuousSMul_iInf, coinduced_iSup, IsTopologicalBasis.iInf, Pi.induced_restrict_sUnion, discreteTopology_bot, equicontinuousAt_iInf_dom, completelyRegularSpace_inf, isDenseInducing_pure, continuous_iSup_rng, induced_to_pi, continuousMul_iInf, TopCat.induced_of_isLimit, continuous_iInf_dom, continuousVAdd_inf, coinduced_sup, LinearOrder.bot_topologicalSpace_eq_generateFrom, inducing_iInf_to_pi, TopCat.nonempty_isColimit_iff_eq_coinduced, DiscreteTopology.eq_bot, equicontinuousOn_iInf_dom, generateFrom_union_isOpen, UniformSpace.toTopologicalSpace_inf, eq_bot_of_singletons_open, Pi.induced_precomp', continuousInv_iInf, RestrictedProduct.topologicalSpace_eq_iSup, withSeminorms_iInf, continuous_sup_rng_left, induced_top, setOf_isOpen_sSup, continuous_inf_rng, GroupTopology.toTopologicalSpace_top, AddGroupTopology.toTopologicalSpace_iInf, Topology.IsGeneratedBy.iSup, PolishSpace.iInf, induced_iInf, TopCat.limit_topology, generateFrom_inter, R1Space.sInf, PolynormableSpace.inf, SequentialSpace.sup, instIndiscreteTopology, LinearMap.mem_span_iff_continuous, AddUnits.topology_eq_inf, topologicalAddGroup_iInf, DeltaGeneratedSpace.iSup, continuous_inf_dom_left, continuous_sInf_rng, continuousVAdd_iInf, IsTopologicalBasis.iInf_induced, AddGroupTopology.toTopologicalSpace_bot, setOf_isOpen_sup
instPartialOrder πŸ“–CompOp
54 mathmath: Topology.lawson_le_scott, le_nhdsAdjoint_iff, Topology.IsGeneratedBy.le_generatedBy, UCompactlyGeneratedSpace.le_compactlyGenerated, deltaGenerated_le, le_of_nhds_le_nhds, t2Space_antitone, UniformConvergenceCLM.topologicalSpace_mono, Measurable.exists_continuous, Topology.upperSet_le_scott, le_def, Topology.IsGeneratedBy.iff_le_generatedBy, generateFrom_anti, Topology.isLawson_le_isScott, le_nhdsAdjoint_iff', le_induced_generateFrom, Topology.scottHausdorff_le_isLawson, t1Space_antitone, DeltaGeneratedSpace.le_deltaGenerated, Topology.scottHausdorff_le_lawson, continuous_iff_le_induced, coinduced_le_iff_le_induced, Topology.IsScott.scottHausdorff_le, Topology.scottHausdorff_le_scott, AddGroupTopology.toTopologicalSpace_le, Topology.scottHausdorff_le_lower, continuous_id_iff_le, induced_topology_le_preorder, le_iff_nhds, Continuous.le_induced, NormedSpace.Dual.dual_norm_topology_le_weak_dual_topology, generatedBy_le, moduleTopology_le, isOpen_implies_isOpen_iff, gc_generateFrom, GroupTopology.toTopologicalSpace_le, gc_nhds, Topology.IsUpperSet.upperSet_le_upper, MeasureTheory.LevyProkhorov.le_convergenceInDistribution, continuous_iff_coinduced_le, MeasureTheory.levyProkhorov_le_convergenceInDistribution, Topology.lawson_le_lower, borel_anti, ContinuousMap.compactOpen_le_induced, UniformSpace.toTopologicalSpace_mono, Topology.IsLower.scottHausdorff_le, TestFunction.topologicalSpace_le_iff, Topology.IsLowerSet.lowerSet_le_lower, gc_coinduced_induced, le_generateFrom_iff_subset_isOpen, le_generateFrom, Opens.IsBasis.le_iff, TestFunction.originalTop_le, Continuous.coinduced_le
mkOfClosure πŸ“–CompOp
1 mathmath: mkOfClosure_sets
mkOfNhds πŸ“–CompOp
4 mathmath: nhds_mkOfNhds_single, nhds_mkOfNhds_of_hasBasis, nhds_mkOfNhds_filterBasis, nhds_mkOfNhds

Theorems

NameKindAssumesProvesValidatesDepends On
eq_top_iff_forall_inseparable πŸ“–mathematicalβ€”Top.top
TopologicalSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Inseparable
β€”indiscrete_iff_forall_inseparable
indiscreteTopology_iff
gc_generateFrom πŸ“–mathematicalβ€”GaloisConnection
TopologicalSpace
OrderDual
Set
PartialOrder.toPreorder
instPartialOrder
OrderDual.instPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
setOf
IsOpen
generateFrom
OrderDual.ofDual
β€”le_generateFrom_iff_subset_isOpen
generateFrom_anti πŸ“–mathematicalSet
Set.instHasSubset
TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
generateFrom
β€”GaloisConnection.monotone_u
gc_generateFrom
generateFrom_setOf_isOpen πŸ“–mathematicalβ€”generateFrom
setOf
Set
IsOpen
β€”GaloisCoinsertion.u_l_eq
generateFrom_surjective πŸ“–mathematicalβ€”Set
TopologicalSpace
generateFrom
β€”GaloisCoinsertion.u_surjective
indiscrete_iff_forall_inseparable πŸ“–mathematicalβ€”IndiscreteTopology
Inseparable
β€”Inseparable.all
IndiscreteTopology.of_forall_inseparable
indiscrete_or_nontrivial πŸ“–mathematicalβ€”IndiscreteTopology
NontrivialTopology
β€”eq_or_ne
isOpen_generateFrom_of_mem πŸ“–mathematicalSet
Set.instMembership
IsOpen
generateFrom
β€”β€”
isOpen_top_iff πŸ“–mathematicalβ€”IsOpen
Top.top
TopologicalSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set
Set.instEmptyCollection
Set.univ
β€”IndiscreteTopology.isOpen_iff
instIndiscreteTopology
le_def πŸ“–mathematicalβ€”TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Pi.hasLe
Set
Prop.le
IsOpen
β€”β€”
le_generateFrom_iff_subset_isOpen πŸ“–mathematicalβ€”TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
generateFrom
Set
Set.instHasSubset
setOf
IsOpen
β€”isOpen_univ
IsOpen.inter
isOpen_sUnion
leftInverse_generateFrom πŸ“–mathematicalβ€”TopologicalSpace
Set
generateFrom
setOf
IsOpen
β€”GaloisCoinsertion.u_l_leftInverse
mkOfClosure_sets πŸ“–mathematicalsetOf
Set
GenerateOpen
mkOfClosure
generateFrom
β€”ext
ne_top_iff_exists_not_inseparable πŸ“–mathematicalβ€”Inseparableβ€”nontrivial_iff_exists_not_inseparable
nontrivialTopology_iff
nhds_generateFrom πŸ“–mathematicalβ€”nhds
generateFrom
iInf
Filter
Set
Filter.instInfSet
Set.instMembership
setOf
Filter.principal
β€”nhds_def
le_antisymm
biInf_mono
le_iInfβ‚‚
iInfβ‚‚_le
LE.le.trans_eq
le_top
Filter.principal_univ
le_inf
Filter.inf_principal
LE.le.trans
Filter.principal_mono
Set.subset_sUnion_of_mem
nhds_mkOfNhds πŸ“–mathematicalPi.hasLe
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instPure
Filter.Eventually
Set
Filter.instMembership
nhds
mkOfNhds
β€”nhds_mkOfNhds_of_hasBasis
Filter.basis_sets
nhds_mkOfNhds_filterBasis πŸ“–mathematicalSet
Set.instMembership
FilterBasis
instMembershipSetFilterBasis
Set.instHasSubset
nhds
mkOfNhds
FilterBasis.filter
β€”nhds_mkOfNhds_of_hasBasis
FilterBasis.hasBasis
nhds_mkOfNhds_of_hasBasis πŸ“–mathematicalFilter.HasBasis
Set
Set.instMembership
Filter.Eventually
Filter
Filter.instMembership
nhds
mkOfNhds
β€”le_antisymm
Filter.HasBasis.ge_iff
mem_nhds_iff
Filter.HasBasis.mem_iff
Filter.Eventually.mono
Filter.mem_of_superset
nhds_basis_opens
nhds_mkOfNhds_single πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instPure
nhds
mkOfNhds
Function.update
β€”nhds_mkOfNhds
le_update_iff
le_rfl
eq_or_ne
Filter.mp_mem
Filter.univ_mem'
Function.update_of_ne
nontrivial_iff_exists_not_inseparable πŸ“–mathematicalβ€”NontrivialTopology
Inseparable
β€”Iff.not
indiscrete_iff_forall_inseparable
not_indiscrete_iff πŸ“–mathematicalβ€”IndiscreteTopology
NontrivialTopology
β€”NontrivialTopology.ne_top
IndiscreteTopology.eq_top
not_nontrivial_iff πŸ“–mathematicalβ€”NontrivialTopology
IndiscreteTopology
β€”Iff.not_right
not_indiscrete_iff
setOf_isOpen_injective πŸ“–mathematicalβ€”TopologicalSpace
Set
setOf
IsOpen
β€”GaloisCoinsertion.l_injective
tendsto_nhds_generateFrom_iff πŸ“–mathematicalβ€”Filter.Tendsto
nhds
generateFrom
Set
Filter
Filter.instMembership
Set.preimage
β€”nhds_generateFrom
forall_swap

(root)

Definitions

NameCategoryTheorems
DiscreteTopology πŸ“–CompData
142 mathmath: DiscreteContAction.instDiscreteTopologyCarrierObjTopCatForgetβ‚‚ContinuousMap, discreteTopology_iff_locallyInjective, IsDiscrete.to_subtype, discreteTopology_of_isOpen_singleton_zero, PrimeSpectrum.discreteTopology_iff_finite_and_krullDimLE_zero, QuotientGroup.discreteTopology, discreteTopology_subtype_iff', instDiscreteTopologyProd, PrimeSpectrum.discreteTopology_iff_finite_isMaximal_and_sInf_le_nilradical, PrimeSpectrum.instDiscreteTopology, instDiscreteTopologyULift, AddSubgroup.discreteTopology_iff_of_isFiniteRelIndex, ZLattice.comap_discreteTopology, compl_mem_codiscrete_iff, NormedField.discreteTopology_or_nontriviallyNormedField, Subgroup.instDiscreteTopologyQuotientOfContinuousMul, instDiscreteTopologyMatrixOfFinite, instDiscreteTopologyFin, is_bot_adic_iff, discreteTopology_of_isOpen_singleton_one, DiscreteTopology.of_forall_le_norm, discreteTopology_of_noAccPts, Subgroup.discreteTopology, instDiscreteTopologyPUnit, PrimeSpectrum.discreteTopology_of_toLocalization_surjective, instDiscreteTopologyBool, CategoryTheory.PreGaloisCategory.obj_discreteTopology, Units.instDiscreteTopology, NumberField.mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIdealLattice, Matrix.SpecialLinearGroup.instDiscreteTopology, JacobsonSpace.discreteTopology, instDiscreteTopologyInt, DiscreteTopology.of_continuous_injective, AlgebraicGeometry.IsLocallyArtinian.iff_isLocallyNoetherian_and_discreteTopology, QuotientAddGroup.discreteTopology_iff, Valued.discreteTopology_of_forall_lt, DiscreteUniformity.instDiscreteTopology, Subgroup.discrete_iff_cyclic, instDiscreteTopologyPEmpty, ChartedSpace.discreteTopology, AddSubgroup.discrete_iff_addCyclic, Homeomorph.discreteTopology_iff, Continuous.discrete_of_tendsto_cofinite_cocompact, forall_open_iff_discrete, AddSubgroup.discreteTopology, isDiscrete_univ_iff, DiscreteTopology.of_predOrder_succOrder, AddSubgroup.discreteTopology_iff_of_finiteIndex, AlgebraicGeometry.IsLocallyArtinian.discreteTopology, ZMod.instDiscreteTopology, FintypeCat.discreteTopology, instDiscreteTopologyAdditive, QuotientGroup.discreteTopology_iff, AddUnits.instDiscreteTopology, PrimeSpectrum.discreteTopology_iff_toPiLocalization_surjective, IsLocalHomeomorph.comap_discreteTopology, CategoryTheory.PreGaloisCategory.aut_discreteTopology, DomAddAct.instDiscreteTopology, Finite.instDiscreteTopology, DomMulAct.instDiscreteTopology, Subgroup.instDiscreteTopStrictPeriods, AlgebraicGeometry.IsArtinianScheme.iff_isNoetherian_and_discreteTopology, instDiscreteTopologyNat, Topology.IsEmbedding.discreteTopology, ZSpan.instDiscreteTopologySubtypeMemSubmoduleIntSpanRangeCoeBasisRealOfFinite, NumberField.Units.instDiscrete_unitLattice, NumberField.mixedEmbedding.euclidean.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, instDiscreteTopologySubtype, AddSubgroup.instDiscreteTopologyQuotientOfContinuousAdd, Subgroup.discreteTopology_iff_of_isFiniteRelIndex, DiscreteQuotient.instDiscreteTopologyQuotient, discreteTopology_iff_singleton_mem_nhds, instDiscreteTopologyOfAlexandrovDiscreteOfT1Space, discreteTopology_bot, discreteTopology_iff_forall_isClosed, TopCat.instDiscreteTopologyCarrierObjDiscrete, Subgroup.discreteTopology_iff_of_finiteIndex, List.instDiscreteTopology, AddSubgroup.instDiscreteTopologyZMultiples, AlgebraicGeometry.IsLocallyArtinian.discreteTopology_of_isAffine, NumberField.mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, instDiscreteTopologySignType, discreteTopology_subtype_iff, Valued.discreteTopology_of_forall_map_eq_one, PeriodPair.instDiscreteTopologySubtypeComplexMemSubmoduleIntLattice, IsLocalHomeomorphOn.discreteTopology_image_iff, DiscreteTopology.of_finite_of_isClosed_singleton, MulOpposite.instDiscreteTopology, ZSpan.instDiscreteTopologySubtypeMemAddSubgroupToAddSubgroupIntSpanRangeCoeBasisRealOfFinite, discreteTopology_iff_forall_isOpen, discreteTopology_of_discrete_uniformity, DiscreteTopology.of_forall_le_dist, IsLocalHomeomorphOn.discreteTopology_of_image, OrderDual.instDiscreteTopology, NormedField.discreteTopology_of_bddAbove_range_norm, instDiscreteTopologySubtypeMemSubmoduleIntComap, Int.instDiscreteTopologySubtypeRealMemAddSubgroupZmultiples, DiscreteTopology.of_subset, Homeomorph.discreteTopology, FintypeCatDiscrete.instDiscreteTopologyCarrier, Subsingleton.discreteTopology, Algebra.QuasiFinite.discreteTopology_primeSpectrum, isDiscrete_iff_discreteTopology, krullTopology_discreteTopology_of_finiteDimensional, exists_infinite_discreteTopology, IsLocalHomeomorph.discreteTopology_range_iff, AddSubgroup.Commensurable.discreteTopology_iff, discreteTopology_iff_isOpen_singleton, ZSpan.discreteTopology_pi_basisFun, instDiscreteTopologyMultiplicative, AddOpposite.instDiscreteTopology, discreteTopology_union, QuotientAddGroup.discreteTopology, Matrix.SpecialLinearGroup.discreteSpecialLinearGroupIntRange, instDiscreteTopologyZerothHomotopy, DiscreteTopology.preimage_of_continuous_injective, discreteTopology_iff_isOpen_singleton_zero, discreteTopology_iff_nhds_ne, TopologicalSpace.NoetherianSpace.discrete, AddAction.IsPretransitive.discreteTopology_iff, MulAction.IsPretransitive.discreteTopology_iff, SetLike.isDiscrete_iff_discreteTopology, instDiscreteTopologyOfFiniteOfJacobsonSpace, PNat.instDiscreteTopology, IsEvenlyCovered.discreteTopology_fiber, Subgroup.instDiscreteTopologyZMultiples, IsLocalHomeomorph.discreteTopology_iff_of_surjective, Subgroup.instDiscreteTopPeriods, Subgroup.Commensurable.discreteTopology_iff, discreteTopology_iff_isOpen_singleton_one, NormedSpace.discreteTopology_zmultiples, Hamming.instDiscreteTopology, Subgroup.IsArithmetic.discreteTopology, singletons_open_iff_discrete, instDiscreteTopologyConnectedComponentsOfLocallyConnectedSpace, instDiscreteTopologyEmpty, discreteTopology_iff_nhds, instDiscreteTopologySubtypeGeneralLinearGroupMemSubgroupAdjoinNegOneOfIsTopologicalRingOfT2Space, PrimeSpectrum.discreteTopology_iff_toPiLocalization_bijective, discreteTopology_iff_orderTopology_of_pred_succ, DiscreteTopology.of_forall_le_norm', Sum.discreteTopology
IndiscreteTopology πŸ“–CompData
25 mathmath: Homeomorph.indiscreteTopology_iff, IndiscreteTopology.of_forall_nnnorm_eq_zero, instIndiscreteTopologyPUnit, indiscreteTopology_iff_forall_norm_eq_zero, IndiscreteTopology.of_forall_inseparable, indiscreteTopology_iff_forall_nnnorm_eq_zero, TopologicalSpace.indiscrete_or_nontrivial, indiscreteTopology_iff_forall_nnnorm_eq_zero', TopologicalSpace.not_indiscrete_iff, indiscreteTopology_iff_forall_norm_eq_zero', TopologicalSpace.not_nontrivial_iff, Topology.IsInducing.indiscreteTopology, SeparationQuotient.inseparableSetoid_eq_top_iff, instIndiscreteTopologyPEmpty, EMetric.subsingleton_iff_indiscreteTopology, IndiscreteTopology.of_forall_nnnorm_eq_zero', instIndiscreteTopologyOfSubsingleton, indiscreteTopology_iff, IndiscreteTopology.of_forall_norm_eq_zero', IndiscreteTopology.of_forall_norm_eq_zero, instIndiscreteTopologyEmpty, TopologicalSpace.indiscrete_iff_forall_inseparable, Homeomorph.indiscreteTopology, SeparationQuotient.subsingleton_iff, instIndiscreteTopology
NontrivialTopology πŸ“–CompData
20 mathmath: NontrivialTopology.of_exists_norm_ne_zero', Homeomorph.nontrivialTopology_iff, nontrivialTopology_iff_exists_nnnorm_ne_zero, Topology.IsInducing.nontrivialTopology, TopologicalSpace.indiscrete_or_nontrivial, TopologicalSpace.not_indiscrete_iff, TopologicalSpace.nontrivial_iff_exists_not_inseparable, TopologicalSpace.not_nontrivial_iff, nontrivialTopology_iff_exists_nnnorm_ne_zero', SeparationQuotient.nontrivial_iff, NontrivialTopology.of_exists_norm_ne_zero, nontrivialTopology_iff_exists_norm_ne_zero, Homeomorph.nontrivialTopology, NontrivialTopology.of_exists_nnnorm_ne_zero, EMetric.nontrivial_iff_nontrivialTopology, nontrivialTopology_iff_exists_norm_ne_zero', NontrivialTopology.of_exists_nnnorm_ne_zero', EMetric.instNontrivialTopologyOfNontrivial, nontrivialTopology_iff, NontrivialTopology.of_exists_not_inseparable
inhabitedTopologicalSpace πŸ“–CompOpβ€”
instTopologicalSpaceBool πŸ“–CompOp
77 mathmath: Profinite.NobelingProof.injective_Ο€s', continuousOn_boolIndicator_iff_isClopen, Profinite.NobelingProof.Products.span_nil_eq_top, Profinite.NobelingProof.GoodProducts.linearIndependent_iff_union_smaller, Profinite.NobelingProof.coe_Ο€s, Profinite.NobelingProof.instSubsingletonLocallyConstantElemForallBoolEmptyCollectionSetInt, Profinite.NobelingProof.Products.max_eq_eval, Profinite.NobelingProof.Products.eval_Ο€s, Profinite.NobelingProof.GoodProducts.injective, Profinite.NobelingProof.GoodProducts.equiv_toFun_eq_eval, Profinite.NobelingProof.Products.eval_Ο€s', Profinite.NobelingProof.GoodProducts.span_sum, Profinite.NobelingProof.GoodProducts.range_equiv_factorization, Profinite.NobelingProof.fin_comap_jointlySurjective, exists_retractionCantorSet, Profinite.NobelingProof.GoodProducts.spanFin, Profinite.NobelingProof.succ_exact, Profinite.NobelingProof.GoodProducts.smaller_factorization, Profinite.NobelingProof.Ο€s'_apply_apply, instDiscreteTopologyBool, Profinite.NobelingProof.Products.eval_eq, Profinite.NobelingProof.Products.evalFacProps, continuous_bool_rng, continuous_isRight, Profinite.NobelingProof.continuous_swapTrue, Profinite.NobelingProof.iso_map_bijective, Profinite.NobelingProof.Products.eval_Ο€s_image', Profinite.NobelingProof.factors_prod_eq_basis_of_ne, Profinite.NobelingProof.continuous_projRestrict, Profinite.NobelingProof.continuous_CC'₁, exists_nat_bool_continuous_surjective_of_compact, Profinite.NobelingProof.GoodProducts.span, Profinite.NobelingProof.isClosed_C0, Profinite.NobelingProof.GoodProducts.linearIndependent_iff_smaller, Profinite.NobelingProof.GoodProducts.linearIndependent_iff_sum, Perfect.exists_nat_bool_injection, Profinite.NobelingProof.e_mem_of_eq_true, Profinite.NobelingProof.Ο€s_apply_apply, Profinite.NobelingProof.GoodProducts.finsuppSum_mem_span_eval, Profinite.NobelingProof.GoodProducts.linearIndependent, Profinite.NobelingProof.GoodProducts.square_commutes, Profinite.NobelingProof.spanFinBasis.span, continuous_boolIndicator_iff_isClopen, Profinite.NobelingProof.isClosed_proj, Profinite.NobelingProof.isClosed_C', IsClosed.exists_nat_bool_injection_of_not_countable, Profinite.NobelingProof.continuous_projRestricts, Profinite.NobelingProof.GoodProducts.smaller_mono, Profinite.NobelingProof.GoodProducts.linearIndependentEmpty, cantorToHilbert_continuous, Profinite.NobelingProof.GoodProducts.span_iff_products, Profinite.NobelingProof.GoodProducts.sum_equiv_comp_eval_eq_elim, Profinite.NobelingProof.CC_comp_zero, Profinite.NobelingProof.eval_eq_Ο€J, Profinite.NobelingProof.continuous_CC'β‚€, Profinite.NobelingProof.Products.evalFacProp, Profinite.NobelingProof.Products.evalCons, Profinite.NobelingProof.one_sub_e_mem_of_false, Profinite.NobelingProof.injective_Ο€s, Profinite.Nobeling.isClosedEmbedding, Profinite.NobelingProof.coe_Ο€s', Profinite.NobelingProof.continuous_proj, Profinite.NobelingProof.GoodProducts.range_equiv_smaller_toFun_bijective, continuous_isLeft, Profinite.NobelingProof.list_prod_apply, Bool.borelSpace, Profinite.NobelingProof.GoodProducts.linearIndependent_iff_range, Profinite.NobelingProof.GoodProducts.max_eq_eval, Profinite.NobelingProof.GoodProducts.linearIndependentSingleton, Profinite.NobelingProof.Products.eval_Ο€s_image, Profinite.NobelingProof.isClosed_C1, Real.fromBinary_continuous, Profinite.NobelingProof.factors_prod_eq_basis, Profinite.NobelingProof.factors_prod_eq_basis_of_eq, Profinite.NobelingProof.GoodProducts.union, Profinite.NobelingProof.GoodProducts.max_eq_eval_unapply, Profinite.NobelingProof.succ_mono
instTopologicalSpaceEmpty πŸ“–CompOp
3 mathmath: Empty.borelSpace, instIndiscreteTopologyEmpty, instDiscreteTopologyEmpty
instTopologicalSpaceFin πŸ“–CompOp
3 mathmath: ContinuousMap.exists_finite_approximation_of_mem_nhds_diagonal, instDiscreteTopologyFin, Real.continuous_ofDigits
instTopologicalSpaceInt πŸ“–CompOp
15 mathmath: Int.borelSpace, AddGroup.continuousSMul_int, Int.cast_continuous, continuousAt_toIocDiv, instDiscreteTopologyInt, Int.isClosedEmbedding_coe_real, Matrix.SpecialLinearGroup.isClosedEmbedding_mapGLInt, instNoncompactSpaceInt, continuousWithinAt_toIocDiv_Iic, continuousAt_toIcoDiv, continuousOn_toIocDiv, continuousOn_toIcoDiv, continuousWithinAt_toIcoDiv_Ici, Int.isClosedEmbedding_coe_rat, Complex.closedEmbedding_intCast
instTopologicalSpaceNat πŸ“–CompOp
22 mathmath: exists_nat_nat_continuous_surjective_of_completeSpace, LightProfinite.continuous_iff_convergent, AddMonoid.continuousSMul_nat, Nat.instNoncompactSpace, Nat.cast_continuous, LightProfinite.instMetrizableSpaceOnePointNat, Nat.isClosedEmbedding_coe_rat, instDiscreteTopologyNat, PolishSpace.exists_nat_nat_continuous_surjective, TopologicalSpace.exists_isInducing_l_infty, exists_topology_isEmbedding_nat, ENat.isEmbedding_natCast, Nat.isClosedEmbedding_coe_real, PadicInt.mahlerEquiv_apply, TopologicalSpace.exists_embedding_l_infty, MeasureTheory.AnalyticSet_def, PadicInt.mahlerEquiv_symm_apply, List.continuousAt_length, OnePoint.continuous_iff_from_nat, LightProfinite.isClosedEmbedding_natUnionInftyEmbedding, ENat.isOpenEmbedding_natCast, Nat.borelSpace
instTopologicalSpacePEmpty πŸ“–CompOp
5 mathmath: AlgebraicGeometry.Scheme.emptyTo_base, instDiscreteTopologyPEmpty, instIndiscreteTopologyPEmpty, AlgebraicGeometry.Scheme.emptyTo_c_app, AlgebraicGeometry.Scheme.empty_presheaf
instTopologicalSpacePUnit πŸ“–CompOp
47 mathmath: LightCondensed.isoFinYonedaComponents_hom_apply, condensedSetToTopCat_obj_carrier, LightCondSet.continuous_coinducingCoprod, CompHausLike.LocallyConstant.adjunction_counit, LightCondSet.topCatAdjunctionUnit_val_app_apply, Unit.borelSpace, instIndiscreteTopologyPUnit, CompHausLike.LocallyConstant.counitApp_app, Condensed.isoFinYonedaComponents_hom_apply, CondensedSet.topCatAdjunctionCounit_hom_apply, CompHausLike.LocallyConstant.incl_of_counitAppApp, instDiscreteTopologyPUnit, Path.instSubsingletonPUnitUnit, ContractibleSpace.hequiv_unit, FundamentalGroupoid.instSubsingletonHomPUnit, Homeomorph.prodPUnit_apply, LightCondensed.isoFinYonedaComponents_inv_comp, CondensedSet.topCatAdjunctionUnit_val_app_apply, LightCondensed.isoLocallyConstantOfIsColimit_inv, Condensed.isoLocallyConstantOfIsColimit_inv, CompHausLike.LocallyConstant.adjunction_left_triangle, Condensed.isoFinYonedaComponents_inv_comp, CondensedSet.continuous_coinducingCoprod, TopCat.Presheaf.isSheaf_on_punit_of_isTerminal, skyscraperPresheaf_eq_pushforward, FundamentalGroupoid.punitEquivDiscretePUnit_unitIso, CondensedSet.topCatAdjunctionUnit_val_app, LightCondensed.underlying_obj, ContractibleSpace.hequiv_unit', TopCat.Presheaf.isSheaf_on_punit_iff_isTerminal, lightCondSetToTopCat_obj_carrier, CompHausLike.LocallyConstant.instIsIsoFunctorTypeUnitSheafCoherentTopologyAdjunction, CompHausLike.LocallyConstant.counit_app_val, CompHausLike.LocallyConstant.unit_app, LightCondSet.topCatAdjunctionUnit_val_app, Condensed.underlying_obj, CompHausLike.LocallyConstant.incl_comap, FundamentalGroupoid.punitEquivDiscretePUnit_counitIso, CondensedSet.toTopCatMap_hom_apply, LightCondensed.underlying_map, FundamentalGroupoid.punitEquivDiscretePUnit_inverse, Condensed.underlying_map, LightCondSet.toTopCatMap_hom_apply, Topology.IsGeneratedBy.instPUnit, Homeomorph.coe_punitProd, CompHausLike.LocallyConstant.adjunction_unit, FundamentalGroupoid.punitEquivDiscretePUnit_functor
nhdsAdjoint πŸ“–CompOp
9 mathmath: le_nhdsAdjoint_iff, nhds_nhdsAdjoint_of_ne, coinduced_nhdsAdjoint, nhds_nhdsAdjoint, le_nhdsAdjoint_iff', isOpen_singleton_nhdsAdjoint, nhds_nhdsAdjoint_same, gc_nhds, continuous_nhdsAdjoint_dom
sierpinskiSpace πŸ“–CompOp
15 mathmath: isOpen_iff_continuous_mem, TopologicalSpace.eq_induced_by_maps_to_sierpinski, nhds_false, nhds_true, tendsto_nhds_Prop, TopologicalSpace.productOfMemOpens_isEmbedding, instIsUpperProp, TopologicalSpace.productOfMemOpens_injective, isOpen_singleton_true, TopologicalSpace.productOfMemOpens_isInducing, instCompletelyNormalSpaceProp, Topology.IsScott.Ο‰ScottContinuous_iff_continuous, continuous_Prop, tendsto_nhds_true, Topology.IsUpperSet.instProp

Theorems

NameKindAssumesProvesValidatesDepends On
closure_discrete πŸ“–mathematicalβ€”closureβ€”IsClosed.closure_eq
isClosed_discrete
closure_induced πŸ“–mathematicalβ€”Set
Set.instMembership
closure
TopologicalSpace.induced
Set.image
β€”nhds_induced
coinduced_bot πŸ“–mathematicalβ€”TopologicalSpace.coinduced
Bot.bot
TopologicalSpace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”GaloisConnection.l_bot
gc_coinduced_induced
coinduced_compose πŸ“–mathematicalβ€”TopologicalSpace.coinducedβ€”TopologicalSpace.ext
coinduced_iSup πŸ“–mathematicalβ€”TopologicalSpace.coinduced
iSup
TopologicalSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”GaloisConnection.l_iSup
gc_coinduced_induced
coinduced_id πŸ“–mathematicalβ€”TopologicalSpace.coinducedβ€”TopologicalSpace.ext
coinduced_le_iff_le_induced πŸ“–mathematicalβ€”TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
TopologicalSpace.coinduced
TopologicalSpace.induced
β€”β€”
coinduced_mono πŸ“–mathematicalTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
TopologicalSpace.coinducedβ€”GaloisConnection.monotone_l
gc_coinduced_induced
coinduced_nhdsAdjoint πŸ“–mathematicalβ€”TopologicalSpace.coinduced
nhdsAdjoint
Filter.map
β€”eq_of_forall_ge_iff
gc_nhds
continuous_iff_coinduced_le
continuous_nhdsAdjoint_dom
Filter.Tendsto.eq_1
coinduced_sSup πŸ“–mathematicalβ€”TopologicalSpace.coinduced
SupSet.sSup
TopologicalSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
Set.image
β€”sSup_eq_iSup'
sSup_image'
coinduced_iSup
coinduced_sup πŸ“–mathematicalβ€”TopologicalSpace.coinduced
TopologicalSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”GaloisConnection.l_sup
gc_coinduced_induced
continuous_Prop πŸ“–mathematicalβ€”Continuous
sierpinskiSpace
IsOpen
setOf
β€”β€”
continuous_bot πŸ“–mathematicalβ€”Continuous
Bot.bot
TopologicalSpace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”continuous_iff_le_induced
bot_le
continuous_coinduced_dom πŸ“–mathematicalβ€”Continuous
TopologicalSpace.coinduced
β€”coinduced_compose
continuous_coinduced_rng πŸ“–mathematicalβ€”Continuous
TopologicalSpace.coinduced
β€”continuous_iff_coinduced_le
le_rfl
continuous_discrete_rng πŸ“–mathematicalβ€”Continuous
IsOpen
Set.preimage
Set
Set.instSingletonSet
β€”IsOpen.preimage
isOpen_discrete
Set.biUnion_of_singleton
Set.preimage_iUnionβ‚‚
isOpen_biUnion
continuous_empty_function πŸ“–mathematicalβ€”Continuousβ€”continuous_of_discreteTopology
Subsingleton.discreteTopology
IsEmpty.instSubsingleton
Function.isEmpty
continuous_generateFrom_iff πŸ“–mathematicalβ€”Continuous
TopologicalSpace.generateFrom
IsOpen
Set.preimage
β€”continuous_iff_coinduced_le
TopologicalSpace.le_generateFrom_iff_subset_isOpen
continuous_iInf_dom πŸ“–mathematicalContinuousiInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”continuous_le_dom
iInf_le
continuous_iInf_rng πŸ“–mathematicalβ€”Continuous
iInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”β€”
continuous_iSup_dom πŸ“–mathematicalβ€”Continuous
iSup
TopologicalSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”β€”
continuous_iSup_rng πŸ“–mathematicalContinuousiSup
TopologicalSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”continuous_sSup_rng
continuous_id_iff_le πŸ“–mathematicalβ€”Continuous
TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
β€”continuous_def
continuous_id_of_le πŸ“–mathematicalTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
Continuousβ€”continuous_id_iff_le
continuous_iff_coinduced_le πŸ“–mathematicalβ€”Continuous
TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
TopologicalSpace.coinduced
β€”continuous_def
continuous_iff_le_induced πŸ“–mathematicalβ€”Continuous
TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
TopologicalSpace.induced
β€”continuous_iff_coinduced_le
gc_coinduced_induced
continuous_induced_dom πŸ“–mathematicalβ€”Continuous
TopologicalSpace.induced
β€”continuous_iff_le_induced
le_rfl
continuous_induced_rng πŸ“–mathematicalβ€”Continuous
TopologicalSpace.induced
β€”induced_compose
continuous_inf_dom_left πŸ“–mathematicalContinuousTopologicalSpace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”continuous_le_dom
inf_le_left
continuous_inf_dom_right πŸ“–mathematicalContinuousTopologicalSpace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”continuous_le_dom
inf_le_right
continuous_inf_rng πŸ“–mathematicalβ€”Continuous
TopologicalSpace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”β€”
continuous_le_dom πŸ“–β€”TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
Continuous
β€”β€”continuous_iff_le_induced
le_trans
continuous_le_rng πŸ“–β€”TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
Continuous
β€”β€”continuous_iff_coinduced_le
le_trans
continuous_nhdsAdjoint_dom πŸ“–mathematicalβ€”Continuous
nhdsAdjoint
Filter.Tendsto
nhds
β€”gc_nhds
nhds_induced
continuous_of_discreteTopology πŸ“–mathematicalβ€”Continuousβ€”continuous_def
isOpen_discrete
continuous_sInf_dom πŸ“–mathematicalTopologicalSpace
Set
Set.instMembership
Continuous
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”continuous_le_dom
sInf_le
continuous_sInf_rng πŸ“–mathematicalβ€”Continuous
InfSet.sInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”β€”
continuous_sSup_dom πŸ“–mathematicalβ€”Continuous
SupSet.sSup
TopologicalSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”β€”
continuous_sSup_rng πŸ“–mathematicalTopologicalSpace
Set
Set.instMembership
Continuous
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”continuous_iff_coinduced_le
le_sSup_of_le
continuous_sup_dom πŸ“–mathematicalβ€”Continuous
TopologicalSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”β€”
continuous_sup_rng_left πŸ“–mathematicalContinuousTopologicalSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”continuous_le_rng
le_sup_left
continuous_sup_rng_right πŸ“–mathematicalContinuousTopologicalSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”continuous_le_rng
le_sup_right
continuous_top πŸ“–mathematicalβ€”Continuous
Top.top
TopologicalSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”continuous_iff_coinduced_le
le_top
denseRange_discrete πŸ“–mathematicalβ€”DenseRangeβ€”DenseRange.eq_1
dense_discrete
Set.range_eq_univ
dense_discrete πŸ“–mathematicalβ€”Dense
Set.univ
β€”IsClosed.closure_eq
discreteTopology_bot πŸ“–mathematicalβ€”DiscreteTopology
Bot.bot
TopologicalSpace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”β€”
discreteTopology_iff_forall_isClosed πŸ“–mathematicalβ€”DiscreteTopology
IsClosed
β€”discreteTopology_iff_forall_isOpen
Function.Surjective.forall
compl_surjective
isOpen_compl_iff
discreteTopology_iff_forall_isOpen πŸ“–mathematicalβ€”DiscreteTopology
IsOpen
β€”isOpen_discrete
eq_bot_of_singletons_open
discreteTopology_iff_isOpen_singleton πŸ“–mathematicalβ€”DiscreteTopology
IsOpen
Set
Set.instSingletonSet
β€”isOpen_discrete
eq_bot_of_singletons_open
discreteTopology_iff_nhds πŸ“–mathematicalβ€”DiscreteTopology
nhds
Filter
Filter.instPure
β€”pure_le_nhds
discreteTopology_iff_nhds_ne πŸ“–mathematicalβ€”DiscreteTopology
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Bot.bot
Filter
Filter.instBot
β€”compl_compl
discreteTopology_iff_singleton_mem_nhds πŸ“–mathematicalβ€”DiscreteTopology
Set
Filter
Filter.instMembership
nhds
Set.instSingletonSet
β€”β€”
eq_bot_of_singletons_open πŸ“–mathematicalIsOpen
Set
Set.instSingletonSet
Bot.bot
TopologicalSpace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”bot_unique
isOpen_biUnion
Set.biUnion_of_singleton
forall_open_iff_discrete πŸ“–mathematicalβ€”IsOpen
DiscreteTopology
β€”discreteTopology_iff_forall_isOpen
gc_coinduced_induced πŸ“–mathematicalβ€”GaloisConnection
TopologicalSpace
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
TopologicalSpace.coinduced
TopologicalSpace.induced
β€”coinduced_le_iff_le_induced
gc_nhds πŸ“–mathematicalβ€”GaloisConnection
Filter
TopologicalSpace
PartialOrder.toPreorder
Filter.instPartialOrder
TopologicalSpace.instPartialOrder
nhdsAdjoint
nhds
β€”le_nhds_iff
generateFrom_iInter πŸ“–mathematicalβ€”TopologicalSpace.generateFrom
Set.iInter
Set
setOf
IsOpen
iSup
TopologicalSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”GaloisCoinsertion.u_iSup_l
generateFrom_iInter_of_generateFrom_eq_self πŸ“–mathematicalsetOf
Set
IsOpen
TopologicalSpace.generateFrom
Set.iInter
iSup
TopologicalSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”GaloisCoinsertion.u_iSup_of_lu_eq_self
generateFrom_iUnion πŸ“–mathematicalβ€”TopologicalSpace.generateFrom
Set.iUnion
Set
iInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”GaloisConnection.u_iInf
TopologicalSpace.gc_generateFrom
generateFrom_iUnion_isOpen πŸ“–mathematicalβ€”TopologicalSpace.generateFrom
Set.iUnion
Set
setOf
IsOpen
iInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”GaloisCoinsertion.u_iInf_l
generateFrom_insert_empty πŸ“–mathematicalβ€”TopologicalSpace.generateFrom
Set
Set.instInsert
Set.instEmptyCollection
β€”Set.sUnion_empty
generateFrom_insert_of_generateOpen
generateFrom_insert_of_generateOpen πŸ“–mathematicalTopologicalSpace.GenerateOpenTopologicalSpace.generateFrom
Set
Set.instInsert
β€”le_antisymm
TopologicalSpace.generateFrom_anti
Set.subset_insert
le_generateFrom
TopologicalSpace.isOpen_generateFrom_of_mem
generateFrom_insert_univ πŸ“–mathematicalβ€”TopologicalSpace.generateFrom
Set
Set.instInsert
Set.univ
β€”generateFrom_insert_of_generateOpen
generateFrom_inter πŸ“–mathematicalβ€”TopologicalSpace.generateFrom
Set
Set.instInter
setOf
IsOpen
TopologicalSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”GaloisCoinsertion.u_sup_l
generateFrom_sUnion πŸ“–mathematicalβ€”TopologicalSpace.generateFrom
Set.sUnion
Set
iInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
Set.instMembership
β€”GaloisConnection.u_sInf
TopologicalSpace.gc_generateFrom
generateFrom_union πŸ“–mathematicalβ€”TopologicalSpace.generateFrom
Set
Set.instUnion
TopologicalSpace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”GaloisConnection.u_inf
TopologicalSpace.gc_generateFrom
generateFrom_union_isOpen πŸ“–mathematicalβ€”TopologicalSpace.generateFrom
Set
Set.instUnion
setOf
IsOpen
TopologicalSpace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”GaloisCoinsertion.u_inf_l
indiscreteTopology_iff πŸ“–mathematicalβ€”IndiscreteTopology
Top.top
TopologicalSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”β€”
induced_compose πŸ“–mathematicalβ€”TopologicalSpace.inducedβ€”TopologicalSpace.ext
induced_const πŸ“–mathematicalβ€”TopologicalSpace.induced
Top.top
TopologicalSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”le_antisymm
le_top
Continuous.le_induced
continuous_const
induced_generateFrom_eq πŸ“–mathematicalβ€”TopologicalSpace.induced
TopologicalSpace.generateFrom
Set.image
Set
Set.preimage
β€”le_antisymm
le_generateFrom
Set.forall_mem_image
coinduced_le_iff_le_induced
Set.mem_image_of_mem
induced_iInf πŸ“–mathematicalβ€”TopologicalSpace.induced
iInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”GaloisConnection.u_iInf
gc_coinduced_induced
induced_id πŸ“–mathematicalβ€”TopologicalSpace.inducedβ€”TopologicalSpace.ext
induced_iff_nhds_eq πŸ“–mathematicalβ€”TopologicalSpace.induced
nhds
Filter.comap
β€”nhds_induced
induced_inf πŸ“–mathematicalβ€”TopologicalSpace.induced
TopologicalSpace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”GaloisConnection.u_inf
gc_coinduced_induced
induced_mono πŸ“–mathematicalTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
TopologicalSpace.inducedβ€”GaloisConnection.monotone_u
gc_coinduced_induced
induced_sInf πŸ“–mathematicalβ€”TopologicalSpace.induced
InfSet.sInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
Set.image
β€”sInf_eq_iInf'
sInf_image'
induced_iInf
induced_top πŸ“–mathematicalβ€”TopologicalSpace.induced
Top.top
TopologicalSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”GaloisConnection.u_top
gc_coinduced_induced
inseparable_top πŸ“–mathematicalβ€”Inseparable
Top.top
TopologicalSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”Inseparable.all
instIndiscreteTopology
instDiscreteTopologyBool πŸ“–mathematicalβ€”DiscreteTopology
instTopologicalSpaceBool
β€”β€”
instDiscreteTopologyEmpty πŸ“–mathematicalβ€”DiscreteTopology
instTopologicalSpaceEmpty
β€”β€”
instDiscreteTopologyFin πŸ“–mathematicalβ€”DiscreteTopology
instTopologicalSpaceFin
β€”β€”
instDiscreteTopologyInt πŸ“–mathematicalβ€”DiscreteTopology
instTopologicalSpaceInt
β€”β€”
instDiscreteTopologyNat πŸ“–mathematicalβ€”DiscreteTopology
instTopologicalSpaceNat
β€”β€”
instDiscreteTopologyPEmpty πŸ“–mathematicalβ€”DiscreteTopology
instTopologicalSpacePEmpty
β€”β€”
instDiscreteTopologyPUnit πŸ“–mathematicalβ€”DiscreteTopology
instTopologicalSpacePUnit
β€”β€”
instIndiscreteTopology πŸ“–mathematicalβ€”IndiscreteTopology
Top.top
TopologicalSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”β€”
instIndiscreteTopologyEmpty πŸ“–mathematicalβ€”IndiscreteTopology
instTopologicalSpaceEmpty
β€”instIndiscreteTopologyOfSubsingleton
instIndiscreteTopologyOfSubsingleton πŸ“–mathematicalβ€”IndiscreteTopologyβ€”Unique.instSubsingleton
instIndiscreteTopologyPEmpty πŸ“–mathematicalβ€”IndiscreteTopology
instTopologicalSpacePEmpty
β€”instIndiscreteTopologyOfSubsingleton
instIndiscreteTopologyPUnit πŸ“–mathematicalβ€”IndiscreteTopology
instTopologicalSpacePUnit
β€”instIndiscreteTopologyOfSubsingleton
isClosed_coinduced πŸ“–mathematicalβ€”IsClosed
TopologicalSpace.coinduced
Set.preimage
β€”isOpen_coinduced
isClosed_discrete πŸ“–mathematicalβ€”IsClosedβ€”isOpen_discrete
isClosed_iSup_iff πŸ“–mathematicalβ€”IsClosed
iSup
TopologicalSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”isOpen_compl_iff
isClosed_induced πŸ“–mathematicalβ€”IsClosed
TopologicalSpace.induced
Set.preimage
β€”isOpen_induced
IsClosed.isOpen_compl
isClosed_induced_iff πŸ“–mathematicalβ€”IsClosed
TopologicalSpace.induced
Set.preimage
β€”Function.Surjective.exists
compl_surjective
isClosed_induced_iff' πŸ“–mathematicalβ€”IsClosed
TopologicalSpace.induced
Set
Set.instMembership
β€”β€”
isClosed_sSup_iff πŸ“–mathematicalβ€”IsClosed
SupSet.sSup
TopologicalSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”sSup_eq_iSup
isOpen_coinduced πŸ“–mathematicalβ€”IsOpen
TopologicalSpace.coinduced
Set.preimage
β€”β€”
isOpen_discrete πŸ“–mathematicalβ€”IsOpenβ€”DiscreteTopology.eq_bot
isOpen_iSup_iff πŸ“–mathematicalβ€”IsOpen
iSup
TopologicalSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”setOf_isOpen_iSup
isOpen_iff_continuous_mem πŸ“–mathematicalβ€”IsOpen
Continuous
sierpinskiSpace
Set
Set.instMembership
β€”continuous_Prop
isOpen_implies_isOpen_iff πŸ“–mathematicalβ€”IsOpen
TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
β€”β€”
isOpen_induced πŸ“–mathematicalIsOpenTopologicalSpace.induced
Set.preimage
β€”β€”
isOpen_induced_eq πŸ“–mathematicalβ€”IsOpen
TopologicalSpace.induced
Set
Set.instMembership
Set.image
Set.preimage
setOf
β€”β€”
isOpen_induced_iff πŸ“–mathematicalβ€”IsOpen
TopologicalSpace.induced
Set.preimage
β€”β€”
isOpen_sSup_iff πŸ“–mathematicalβ€”IsOpen
SupSet.sSup
TopologicalSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”sSup_eq_iSup
isOpen_singleton_nhdsAdjoint πŸ“–mathematicalβ€”IsOpen
nhdsAdjoint
Set
Set.instSingletonSet
β€”β€”
isOpen_singleton_true πŸ“–mathematicalβ€”IsOpen
sierpinskiSpace
Set
Set.instSingletonSet
β€”Set.mem_singleton
isOpen_sup πŸ“–mathematicalβ€”IsOpen
TopologicalSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”β€”
le_generateFrom πŸ“–mathematicalIsOpenTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
TopologicalSpace.generateFrom
β€”TopologicalSpace.le_generateFrom_iff_subset_isOpen
le_iff_nhds πŸ“–mathematicalβ€”TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
Filter
Filter.instPartialOrder
nhds
β€”nhds_mono
le_of_nhds_le_nhds
le_induced_generateFrom πŸ“–mathematicalIsOpen
Set.preimage
TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
TopologicalSpace.induced
TopologicalSpace.generateFrom
β€”induced_generateFrom_eq
le_generateFrom
le_nhdsAdjoint_iff πŸ“–mathematicalβ€”TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
nhdsAdjoint
Filter
Filter.instPartialOrder
nhds
Filter.instSup
Filter.instPure
IsOpen
Set
Set.instSingletonSet
β€”isOpen_singleton_iff_nhds_eq_pure
le_nhdsAdjoint_iff' πŸ“–mathematicalβ€”TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
nhdsAdjoint
Filter
Filter.instPartialOrder
nhds
Filter.instSup
Filter.instPure
β€”nhds_nhdsAdjoint
LE.le.ge_iff_eq'
pure_le_nhds
le_of_nhds_le_nhds πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
TopologicalSpace
TopologicalSpace.instPartialOrder
β€”isOpen_iff_mem_nhds
map_nhds_induced_eq πŸ“–mathematicalβ€”Filter.map
nhds
TopologicalSpace.induced
nhdsWithin
Set.range
β€”nhds_induced
Filter.map_comap
nhdsWithin.eq_1
map_nhds_induced_of_mem πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Set.range
Filter.map
TopologicalSpace.induced
β€”nhds_induced
Filter.map_comap_of_mem
map_nhds_induced_of_surjective πŸ“–mathematicalβ€”Filter.map
nhds
TopologicalSpace.induced
β€”nhds_induced
Filter.map_comap_of_surjective
mem_nhds_discrete πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
Set.instMembership
β€”nhds_discrete
Filter.mem_pure
mem_nhds_induced πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
TopologicalSpace.induced
Set.instHasSubset
Set.preimage
β€”Set.Subset.rfl
HasSubset.Subset.trans
Set.instIsTransSubset
Set.preimage_mono
nhds_discrete πŸ“–mathematicalβ€”nhds
Filter
Filter.instPure
β€”le_antisymm
IsOpen.mem_nhds
isOpen_discrete
pure_le_nhds
nhds_false πŸ“–mathematicalβ€”nhds
sierpinskiSpace
Top.top
Filter
Filter.instTop
β€”TopologicalSpace.nhds_generateFrom
iInf_congr_Prop
Filter.principal_singleton
instIsEmptyFalse
nhds_iInf πŸ“–mathematicalβ€”nhds
iInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
Filter
Filter.instInfSet
β€”GaloisConnection.u_iInf
gc_nhds
nhds_induced πŸ“–mathematicalβ€”nhds
TopologicalSpace.induced
Filter.comap
β€”Filter.ext
mem_nhds_induced
Filter.mem_comap
nhds_inf πŸ“–mathematicalβ€”nhds
TopologicalSpace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
Filter
Filter.instInf
β€”GaloisConnection.u_inf
gc_nhds
nhds_mono πŸ“–mathematicalTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
Filter
Filter.instPartialOrder
nhds
β€”GaloisConnection.monotone_u
gc_nhds
nhds_nhdsAdjoint πŸ“–mathematicalβ€”nhds
nhdsAdjoint
Function.update
Filter
Filter.instPure
Filter.instSup
β€”Function.eq_update_iff
nhds_nhdsAdjoint_same
nhds_nhdsAdjoint_of_ne
nhds_nhdsAdjoint_of_ne πŸ“–mathematicalβ€”nhds
nhdsAdjoint
Filter
Filter.instPure
β€”isOpen_singleton_iff_nhds_eq_pure
isOpen_singleton_nhdsAdjoint
nhds_nhdsAdjoint_same πŸ“–mathematicalβ€”nhds
nhdsAdjoint
Filter
Filter.instSup
Filter.instPure
β€”le_antisymm
IsOpen.mem_nhds
sup_le
pure_le_nhds
GaloisConnection.le_u_l
gc_nhds
nhds_sInf πŸ“–mathematicalβ€”nhds
InfSet.sInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
iInf
Filter
Filter.instInfSet
Set
Set.instMembership
β€”GaloisConnection.u_sInf
gc_nhds
nhds_top πŸ“–mathematicalβ€”nhds
Top.top
TopologicalSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Filter
Filter.instTop
β€”GaloisConnection.u_top
gc_nhds
nhds_true πŸ“–mathematicalβ€”nhds
sierpinskiSpace
Filter
Filter.instPure
β€”le_antisymm
Filter.le_pure_iff
IsOpen.mem_nhds
isOpen_singleton_true
Set.mem_singleton
pure_le_nhds
nontrivialTopology_iff πŸ“–mathematicalβ€”NontrivialTopologyβ€”β€”
preimage_nhds_coinduced πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
TopologicalSpace.coinduced
Set.preimageβ€”mem_nhds_iff
Set.preimage_mono
setOf_isOpen_iSup πŸ“–mathematicalβ€”setOf
Set
IsOpen
iSup
TopologicalSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
Set.iInter
β€”GaloisConnection.l_iSup
TopologicalSpace.gc_generateFrom
setOf_isOpen_sSup πŸ“–mathematicalβ€”setOf
Set
IsOpen
SupSet.sSup
TopologicalSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
Set.iInter
Set.instMembership
β€”GaloisConnection.l_sSup
TopologicalSpace.gc_generateFrom
setOf_isOpen_sup πŸ“–mathematicalβ€”setOf
Set
IsOpen
TopologicalSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
Set.instInter
β€”β€”
singletons_open_iff_discrete πŸ“–mathematicalβ€”IsOpen
Set
Set.instSingletonSet
DiscreteTopology
β€”discreteTopology_iff_isOpen_singleton
tendsto_nhds_Prop πŸ“–mathematicalβ€”Filter.Tendsto
nhds
sierpinskiSpace
Filter.Eventually
β€”nhds_true
nhds_false
instIsEmptyFalse
tendsto_nhds_true πŸ“–mathematicalβ€”Filter.Tendsto
nhds
sierpinskiSpace
Filter.Eventually
β€”nhds_true

closure

Theorems

NameKindAssumesProvesValidatesDepends On
mono πŸ“–mathematicalTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
Set
Set.instHasSubset
closure
β€”closure_minimal
subset_closure
IsClosed.mono
isClosed_closure

---

← Back to Index