Documentation Verification Report

AtTopBotIxx

πŸ“ Source: Mathlib/Topology/Order/AtTopBotIxx.lean

Statistics

MetricCount
Definitions0
Theoremscomap_coe_Iio_nhdsLT, comap_coe_Ioi_nhdsGT, comap_coe_Ioo_nhdsGT, comap_coe_Ioo_nhdsLT, comap_coe_nhdsGT_eq_atBot_iff, comap_coe_nhdsGT_of_Ioo_subset, comap_coe_nhdsLT_eq_atTop_iff, comap_coe_nhdsLT_of_Ioo_subset, map_coe_Iio_atTop, map_coe_Ioi_atBot, map_coe_Ioo_atBot, map_coe_Ioo_atTop, map_coe_atBot_of_Ioo_subset, map_coe_atTop_of_Ioo_subset, tendsto_Iio_atTop, tendsto_Ioi_atBot, tendsto_Ioo_atBot, tendsto_Ioo_atTop, tendsto_comp_coe_Iio_atTop, tendsto_comp_coe_Ioi_atBot, tendsto_comp_coe_Ioo_atBot, tendsto_comp_coe_Ioo_atTop
22
Total22

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
comap_coe_Iio_nhdsLT πŸ“–mathematicalOrder.IsSuccPrelimit
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.comap
Set
Set.instMembership
Set.Iio
nhdsWithin
Filter.atTop
Subtype.preorder
β€”comap_coe_Ioi_nhdsGT
instOrderTopologyOrderDual
Order.IsSuccPrelimit.dual
comap_coe_Ioi_nhdsGT πŸ“–mathematicalOrder.IsPredPrelimit
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.comap
Set
Set.instMembership
Set.Ioi
nhdsWithin
Filter.atBot
Subtype.preorder
β€”comap_coe_nhdsGT_of_Ioo_subset
Set.Subset.rfl
Set.Ioo_subset_Ioi_self
comap_coe_Ioo_nhdsGT πŸ“–mathematicalOrder.IsPredPrelimit
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.comap
Set
Set.instMembership
Set.Ioo
nhdsWithin
Set.Ioi
Filter.atBot
Subtype.preorder
β€”comap_coe_nhdsGT_of_Ioo_subset
Set.Ioo_subset_Ioi_self
LT.lt.trans
Set.Subset.rfl
comap_coe_Ioo_nhdsLT πŸ“–mathematicalOrder.IsSuccPrelimit
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.comap
Set
Set.instMembership
Set.Ioo
nhdsWithin
Set.Iio
Filter.atTop
Subtype.preorder
β€”comap_coe_nhdsLT_of_Ioo_subset
Set.Ioo_subset_Iio_self
LT.lt.trans
Set.Subset.rfl
comap_coe_nhdsGT_eq_atBot_iff πŸ“–mathematicalβ€”Filter.comap
Set
Set.instMembership
nhdsWithin
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.atBot
Subtype.preorder
Set.instHasSubset
Set.Nonempty
Set.instInter
Set.Ioo
β€”comap_coe_nhdsLT_eq_atTop_iff
instOrderTopologyOrderDual
EquivLike.range_eq_univ
Equiv.surjective
Set.Ioo_toDual
comap_coe_nhdsGT_of_Ioo_subset πŸ“–mathematicalSet
Set.instHasSubset
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set.Ioo
Order.IsPredPrelimit
Filter.comap
Set.instMembership
nhdsWithin
Filter.atBot
Subtype.preorder
β€”comap_coe_nhdsLT_of_Ioo_subset
instOrderTopologyOrderDual
Set.Ioo_toDual
Order.IsPredPrelimit.dual
comap_coe_nhdsLT_eq_atTop_iff πŸ“–mathematicalβ€”Filter.comap
Set
Set.instMembership
nhdsWithin
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.atTop
Subtype.preorder
Set.instHasSubset
Set.Nonempty
Set.instInter
Set.Ioo
β€”Set.eq_empty_or_nonempty
Unique.instSubsingleton
Set.instIsEmptyElemEmptyCollection
Set.empty_inter
instIsEmptyFalse
Set.Nonempty.to_subtype
Filter.preimage_mem_comap
Ioo_mem_nhdsLT
instClosedIicTopology
OrderTopology.to_orderClosedTopology
Filter.nonempty_of_mem
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Filter.HasBasis.ext
Filter.HasBasis.comap
nhdsLT_basis_of_exists_lt
Set.Nonempty.mono
Filter.atTop_basis
LT.lt.trans_le
Set.not_subset_iff_exists_mem_notMem
Filter.Eventually.exists
Filter.Eventually.and
Filter.Tendsto.eventually
eventually_mem_nhdsWithin
Filter.eventually_ge_atTop
lt_irrefl
Mathlib.Tactic.Contrapose.contraposeβ‚‚
comap_coe_nhdsLT_of_Ioo_subset πŸ“–mathematicalSet
Set.instHasSubset
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set.Ioo
Order.IsSuccPrelimit
Filter.comap
Set.instMembership
nhdsWithin
Filter.atTop
Subtype.preorder
β€”comap_coe_nhdsLT_eq_atTop_iff
Order.IsSuccPrelimit.lt_iff_exists_lt
max_lt
max_lt_iff
map_coe_Iio_atTop πŸ“–mathematicalOrder.IsSuccPrelimit
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.map
Set
Set.instMembership
Set.Iio
Filter.atTop
Subtype.preorder
nhdsWithin
β€”map_coe_Ioi_atBot
instOrderTopologyOrderDual
Order.IsSuccPrelimit.dual
map_coe_Ioi_atBot πŸ“–mathematicalOrder.IsPredPrelimit
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.map
Set
Set.instMembership
Set.Ioi
Filter.atBot
Subtype.preorder
nhdsWithin
β€”map_coe_atBot_of_Ioo_subset
Set.Subset.rfl
Set.Ioo_subset_Ioi_self
map_coe_Ioo_atBot πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Order.IsPredPrelimit
Filter.map
Set
Set.instMembership
Set.Ioo
Filter.atBot
Subtype.preorder
nhdsWithin
Set.Ioi
β€”map_coe_atBot_of_Ioo_subset
Set.Ioo_subset_Ioi_self
Set.Subset.rfl
map_coe_Ioo_atTop πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Order.IsSuccPrelimit
Filter.map
Set
Set.instMembership
Set.Ioo
Filter.atTop
Subtype.preorder
nhdsWithin
Set.Iio
β€”map_coe_atTop_of_Ioo_subset
Set.Ioo_subset_Iio_self
Set.Subset.rfl
map_coe_atBot_of_Ioo_subset πŸ“–mathematicalSet
Set.instHasSubset
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set.Ioo
Order.IsPredPrelimit
Filter.map
Set.instMembership
Filter.atBot
Subtype.preorder
nhdsWithin
β€”map_coe_atTop_of_Ioo_subset
instOrderTopologyOrderDual
Set.Ioo_toDual
EquivLike.range_eq_univ
Order.IsPredPrelimit.dual
map_coe_atTop_of_Ioo_subset πŸ“–mathematicalSet
Set.instHasSubset
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set.Ioo
Order.IsSuccPrelimit
Filter.map
Set.instMembership
Filter.atTop
Subtype.preorder
nhdsWithin
β€”Set.eq_empty_or_nonempty
Eq.subset
Set.instReflSubset
Filter.filter_eq_bot_of_isEmpty
Filter.map_bot
nhdsWithin_empty
comap_coe_nhdsLT_of_Ioo_subset
Filter.map_comap_of_mem
Subtype.range_val
mem_nhdsLT_iff_exists_Ioo_subset'
tendsto_Iio_atTop πŸ“–mathematicalOrder.IsSuccPrelimit
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Tendsto
Set.Elem
Set.Iio
Filter.atTop
Subtype.preorder
Set
Set.instMembership
nhdsWithin
β€”comap_coe_Iio_nhdsLT
Filter.tendsto_comap_iff
tendsto_Ioi_atBot πŸ“–mathematicalOrder.IsPredPrelimit
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Tendsto
Set.Elem
Set.Ioi
Filter.atBot
Subtype.preorder
Set
Set.instMembership
nhdsWithin
β€”comap_coe_Ioi_nhdsGT
Filter.tendsto_comap_iff
tendsto_Ioo_atBot πŸ“–mathematicalOrder.IsPredPrelimit
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Tendsto
Set.Elem
Set.Ioo
Filter.atBot
Subtype.preorder
Set
Set.instMembership
nhdsWithin
Set.Ioi
β€”comap_coe_Ioo_nhdsGT
Filter.tendsto_comap_iff
tendsto_Ioo_atTop πŸ“–mathematicalOrder.IsSuccPrelimit
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Tendsto
Set.Elem
Set.Ioo
Filter.atTop
Subtype.preorder
Set
Set.instMembership
nhdsWithin
Set.Iio
β€”comap_coe_Ioo_nhdsLT
Filter.tendsto_comap_iff
tendsto_comp_coe_Iio_atTop πŸ“–mathematicalOrder.IsSuccPrelimit
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Tendsto
Set.Elem
Set.Iio
Set
Set.instMembership
Filter.atTop
Subtype.preorder
nhdsWithin
β€”map_coe_Iio_atTop
Filter.tendsto_map'_iff
tendsto_comp_coe_Ioi_atBot πŸ“–mathematicalOrder.IsPredPrelimit
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Tendsto
Set.Elem
Set.Ioi
Set
Set.instMembership
Filter.atBot
Subtype.preorder
nhdsWithin
β€”map_coe_Ioi_atBot
Filter.tendsto_map'_iff
tendsto_comp_coe_Ioo_atBot πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Order.IsPredPrelimit
Filter.Tendsto
Set.Elem
Set.Ioo
Set
Set.instMembership
Filter.atBot
Subtype.preorder
nhdsWithin
Set.Ioi
β€”map_coe_Ioo_atBot
Filter.tendsto_map'_iff
tendsto_comp_coe_Ioo_atTop πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Order.IsSuccPrelimit
Filter.Tendsto
Set.Elem
Set.Ioo
Set
Set.instMembership
Filter.atTop
Subtype.preorder
nhdsWithin
Set.Iio
β€”map_coe_Ioo_atTop
Filter.tendsto_map'_iff

---

← Back to Index