Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/Order/Basic.lean

Statistics

MetricCount
DefinitionsOrderTopology, topology
2
Theoremstopology_eq_generateFrom, exists_Ioo_subset, squeeze, squeeze', isClosed, isOpen, exists_Ioo_subset, isClosed, isOpen, continuousWithinAt_Iic, isEmbedding_of_ordConnected, continuous_iff, to_orderClosedTopology, topology_eq_generate_intervals, hasBasis_nhds_Ioc, hasBasis_nhds_Ioc_of_exists_gt, continuousWithinAt_Ici, of_separableSpace_orderTopology, countable_of_Ioo, induced_topology_eq_preorder, isEmbedding_of_ordConnected, hasBasis_nhds_Ioc, hasBasis_nhds_Ioc_of_exists_lt, countable_image_gt_image_Iio, countable_image_gt_image_Iio_within, countable_image_gt_image_Ioi, countable_image_gt_image_Ioi_within, countable_image_lt_image_Iio, countable_image_lt_image_Iio_within, countable_image_lt_image_Ioi, countable_image_lt_image_Ioi_within, countable_of_isolated_left', countable_setOf_covBy_left, countable_setOf_covBy_right, dense_iff_exists_between, dense_of_exists_between, exists_Icc_mem_subset_of_mem_nhds, exists_Icc_mem_subset_of_mem_nhdsGE, exists_Icc_mem_subset_of_mem_nhdsLE, exists_Ico_subset_of_mem_nhds, exists_Ico_subset_of_mem_nhds', exists_Ioc_subset_of_mem_nhds, exists_Ioc_subset_of_mem_nhds', exists_countable_generateFrom_Ioi_Iio, ge_mem_nhds, gt_mem_nhds, induced_orderTopology, induced_orderTopology', induced_topology_eq_preorder, induced_topology_le_preorder, instIsCountablyGenerated_atBot, instIsCountablyGenerated_atTop, instOrderTopologyOrderDual, instSecondCountableTopologyOfOrderTopologyOfCountable, isOpen_Iio', isOpen_Ioi', isOpen_gt', isOpen_iff_generate_intervals, isOpen_lt', isTopologicalBasis_biInter_Ioi_Iio_of_generateFrom, le_mem_nhds, lt_mem_nhds, mem_nhds_iff_exists_Ioo_subset, mem_nhds_iff_exists_Ioo_subset', nhdsGE_basis, nhdsGE_basis_of_exists_gt, nhdsGE_eq_iInf_inf_principal, nhdsGE_eq_iInf_principal, nhdsLE_basis, nhdsLE_basis_of_exists_lt, nhdsLE_eq_iInf_inf_principal, nhdsLE_eq_iInf_principal, nhds_basis_Ioo, nhds_basis_Ioo', nhds_bot_basis, nhds_bot_basis_Iic, nhds_bot_order, nhds_eq_order, nhds_order_unbounded, nhds_top_basis, nhds_top_basis_Ici, nhds_top_order, orderTopology_of_ordConnected, order_separated, pi_Icc_mem_nhds, pi_Icc_mem_nhds', pi_Ici_mem_nhds, pi_Ici_mem_nhds', pi_Ico_mem_nhds, pi_Ico_mem_nhds', pi_Iic_mem_nhds, pi_Iic_mem_nhds', pi_Iio_mem_nhds, pi_Iio_mem_nhds', pi_Ioc_mem_nhds, pi_Ioc_mem_nhds', pi_Ioi_mem_nhds, pi_Ioi_mem_nhds', pi_Ioo_mem_nhds, pi_Ioo_mem_nhds', tendstoIccClassNhds, tendstoIccClassNhdsPi, tendstoIcoClassNhds, tendstoIocClassNhds, tendstoIooClassNhds, tendstoIxxNhdsWithin, tendsto_nhds_bot_mono, tendsto_nhds_bot_mono', tendsto_nhds_top_mono, tendsto_nhds_top_mono', tendsto_of_tendsto_of_tendsto_of_le_of_le, tendsto_of_tendsto_of_tendsto_of_le_of_le', tendsto_order, tendsto_order_unbounded
114
Total116

Dense

Theorems

NameKindAssumesProvesValidatesDepends On
topology_eq_generateFrom πŸ“–mathematicalDenseTopologicalSpace.generateFrom
Set
Set.instUnion
Set.image
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Iio
β€”OrderTopology.topology_eq_generate_intervals
le_antisymm
TopologicalSpace.generateFrom_anti
le_generateFrom
Ioi_eq_biUnion
OrderTopology.to_orderClosedTopology
isOpen_iUnion
Set.mem_image_of_mem
Iio_eq_biUnion

Filter.Eventually

Theorems

NameKindAssumesProvesValidatesDepends On
exists_Ioo_subset πŸ“–mathematicalFilter.Eventually
nhds
Set
Set.instMembership
Set.Ioo
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.instHasSubset
setOf
β€”mem_nhds_iff_exists_Ioo_subset

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
squeeze πŸ“–β€”Filter.Tendsto
nhds
Pi.hasLe
Preorder.toLE
β€”β€”tendsto_of_tendsto_of_tendsto_of_le_of_le
squeeze' πŸ“–β€”Filter.Tendsto
nhds
Filter.Eventually
Preorder.toLE
β€”β€”tendsto_of_tendsto_of_tendsto_of_le_of_le'

IsLowerSet

Theorems

NameKindAssumesProvesValidatesDepends On
isClosed πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsClosedβ€”IsUpperSet.isClosed
instOrderTopologyOrderDual
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
toDual
isOpen πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsOpenβ€”IsUpperSet.isClosed
compl

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
exists_Ioo_subset πŸ“–mathematicalIsOpen
Set.Nonempty
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instHasSubset
Set.Ioo
β€”exists_ne
lt_trichotomy
exists_Ico_subset_of_mem_nhds
mem_nhds
HasSubset.Subset.trans
Set.instIsTransSubset
Set.Ioo_subset_Ico_self
exists_Ioc_subset_of_mem_nhds
Set.Ioo_subset_Ioc_self

IsUpperSet

Theorems

NameKindAssumesProvesValidatesDepends On
isClosed πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsClosedβ€”eq_empty_or_Ici
isClosed_empty
isClosed_Ici
instClosedIciTopology
OrderTopology.to_orderClosedTopology
isOpen πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsOpenβ€”IsLowerSet.isOpen
instOrderTopologyOrderDual
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
toDual

LeftOrdContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
continuousWithinAt_Iic πŸ“–mathematicalLeftOrdContinuous
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ContinuousWithinAt
Set.Iic
β€”ContinuousWithinAt.eq_1
OrderTopology.topology_eq_generate_intervals
lt_isLUB_iff
isLUB_Iio
isOpen_Ioi
instClosedIicTopology
OrderTopology.to_orderClosedTopology
LT.lt.trans_le
mono
LT.lt.le
isOpen_univ
LE.le.trans_lt

OrderEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
isEmbedding_of_ordConnected πŸ“–mathematicalβ€”Topology.IsEmbedding
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instFunLikeOrderEmbedding
β€”StrictMono.isEmbedding_of_ordConnected
strictMono

OrderTopology

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_iff πŸ“–mathematicalβ€”Continuous
IsOpen
Set.preimage
Set.Ioi
Set.Iio
β€”topology_eq_generate_intervals
to_orderClosedTopology πŸ“–mathematicalβ€”OrderClosedTopology
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”isOpen_compl_iff
isOpen_prod_iff
lt_of_not_ge
order_separated
not_le_of_gt
topology_eq_generate_intervals πŸ“–mathematicalβ€”TopologicalSpace.generateFrom
setOf
Set
Set.Ioi
Set.Iio
β€”β€”

PredOrder

Theorems

NameKindAssumesProvesValidatesDepends On
hasBasis_nhds_Ioc πŸ“–mathematicalβ€”Filter.HasBasis
nhds
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Ico
β€”hasBasis_nhds_Ioc_of_exists_gt
NoMaxOrder.exists_gt
hasBasis_nhds_Ioc_of_exists_gt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.HasBasis
nhds
Set.Ico
β€”nhdsGE_basis_of_exists_gt
nhdsGE_eq_nhds
instClosedIicTopology
OrderTopology.to_orderClosedTopology

Preorder

Definitions

NameCategoryTheorems
topology πŸ“–CompOp
4 mathmath: StrictMono.induced_topology_eq_preorder, MeasureTheory.Filtration.rightCont_def, induced_topology_eq_preorder, induced_topology_le_preorder

RightOrdContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
continuousWithinAt_Ici πŸ“–mathematicalRightOrdContinuous
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ContinuousWithinAt
Set.Ici
β€”LeftOrdContinuous.continuousWithinAt_Iic
instOrderTopologyOrderDual
OrderDual.denselyOrdered
orderDual

SecondCountableTopology

Theorems

NameKindAssumesProvesValidatesDepends On
of_separableSpace_orderTopology πŸ“–mathematicalβ€”SecondCountableTopologyβ€”TopologicalSpace.exists_countable_dense
Set.Countable.union
Set.Countable.image
Dense.topology_eq_generateFrom

Set.PairwiseDisjoint

Theorems

NameKindAssumesProvesValidatesDepends On
countable_of_Ioo πŸ“–mathematicalSet.PairwiseDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Ioo
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set.Countableβ€”countable_of_isOpen
TopologicalSpace.SecondCountableTopology.to_separableSpace
subset
Set.diff_subset
isOpen_Ioo
OrderTopology.to_orderClosedTopology
LT.lt.exists_lt_lt
Set.Countable.of_diff
countable_setOf_covBy_right

StrictMono

Theorems

NameKindAssumesProvesValidatesDepends On
induced_topology_eq_preorder πŸ“–mathematicalStrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
TopologicalSpace.induced
Preorder.topology
β€”induced_topology_eq_preorder
lt_iff_lt
Set.OrdConnected.out
Set.mem_range_self
not_lt
LT.lt.le
le_rfl
isEmbedding_of_ordConnected πŸ“–mathematicalStrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Topology.IsEmbeddingβ€”OrderTopology.topology_eq_generate_intervals
induced_topology_eq_preorder
injective

SuccOrder

Theorems

NameKindAssumesProvesValidatesDepends On
hasBasis_nhds_Ioc πŸ“–mathematicalβ€”Filter.HasBasis
nhds
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Ioc
β€”hasBasis_nhds_Ioc_of_exists_lt
NoMinOrder.exists_lt
hasBasis_nhds_Ioc_of_exists_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.HasBasis
nhds
Set.Ioc
β€”nhdsLE_basis_of_exists_lt
nhdsLE_eq_nhds
instClosedIciTopology
OrderTopology.to_orderClosedTopology

(root)

Definitions

NameCategoryTheorems
OrderTopology πŸ“–CompData
19 mathmath: orderTopology_of_nhds_mabs, orderTopology_of_nhds_abs, TopologicalSpace.instOrderTopologyWithTop, ENat.instOrderTopology, Rat.instOrderTopology, Irrational.instOrderTopologySubtypeReal, induced_orderTopology', instOrderTopologyReal, Ordinal.instOrderTopology, NNReal.instOrderTopology, ENNReal.instOrderTopology, NNRat.instOrderTopology, instOrderTopologyOrderDual, OrderTopology.of_discreteTopology, OrderTopology.of_linearLocallyFinite, orderTopology_of_ordConnected, discreteTopology_iff_orderTopology_of_pred_succ, EReal.instOrderTopology, induced_orderTopology

Theorems

NameKindAssumesProvesValidatesDepends On
countable_image_gt_image_Iio πŸ“–mathematicalβ€”Set.Countable
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”countable_image_lt_image_Ioi
instOrderTopologyOrderDual
instSecondCountableTopologyOrderDual
countable_image_gt_image_Iio_within πŸ“–mathematicalβ€”Set.Countable
setOf
Set
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”countable_image_lt_image_Ioi_within
instOrderTopologyOrderDual
instSecondCountableTopologyOrderDual
countable_image_gt_image_Ioi πŸ“–mathematicalβ€”Set.Countable
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”countable_image_lt_image_Ioi
instOrderTopologyOrderDual
instSecondCountableTopologyOrderDual
countable_image_gt_image_Ioi_within πŸ“–mathematicalβ€”Set.Countable
setOf
Set
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”countable_image_lt_image_Ioi_within
instOrderTopologyOrderDual
instSecondCountableTopologyOrderDual
countable_image_lt_image_Iio πŸ“–mathematicalβ€”Set.Countable
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”countable_image_lt_image_Ioi
countable_image_lt_image_Iio_within πŸ“–mathematicalβ€”Set.Countable
setOf
Set
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”countable_image_lt_image_Ioi_within
countable_image_lt_image_Ioi πŸ“–mathematicalβ€”Set.Countable
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”countable_image_lt_image_Ioi_within
countable_image_lt_image_Ioi_within πŸ“–mathematicalβ€”Set.Countable
setOf
Set
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
instIsEmptyFalse
Nonempty.map
Nontrivial.to_nonempty
StrictMonoOn.injOn
LE.le.lt_of_ne
Set.disjoint_iff_forall_ne
lt_irrefl
LT.lt.trans
LT.lt.trans_le
Set.InjOn.leftInvOn_invFunOn
Disjoint.symm
le_of_not_ge
Set.PairwiseDisjoint.countable_of_Ioo
Set.MapsTo.countable_of_injOn
Set.mapsTo_image
Function.sometimes_spec
countable_of_isolated_left' πŸ“–mathematicalβ€”Set.Countable
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.Ioo
Set.instEmptyCollection
β€”countable_setOf_covBy_left
countable_setOf_covBy_left πŸ“–mathematicalβ€”Set.Countable
setOf
CovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”toDual_covBy_toDual_iff
countable_setOf_covBy_right
instOrderTopologyOrderDual
instSecondCountableTopologyOrderDual
countable_setOf_covBy_right πŸ“–mathematicalβ€”Set.Countable
setOf
CovBy
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
CovBy.le_of_lt
exists_Ioc_subset_of_mem_nhds
IsOpen.mem_nhds
Ne.lt_or_gt
Set.disjoint_left
LT.lt.trans_le
LE.le.trans
CovBy.le
lt_irrefl
LE.le.trans_lt
Set.PairwiseDisjoint.countable_of_isOpen
TopologicalSpace.SecondCountableTopology.to_separableSpace
Set.Subset.antisymm
Set.Ioc_subset_Ioo_right
CovBy.lt
isOpen_Ioo
OrderTopology.to_orderClosedTopology
le_rfl
Function.sometimes_spec
Set.Countable.of_diff
Set.Subsingleton.countable
Set.subsingleton_isBot
TopologicalSpace.IsTopologicalBasis.exists_mem_of_ne
T2Space.t1Space
OrderClosedTopology.to_t2Space
TopologicalSpace.isBasis_countableBasis
CovBy.ne
Set.mem_iUnionβ‚‚
Set.Countable.mono
Set.Countable.biUnion
TopologicalSpace.countable_countableBasis
TopologicalSpace.isOpen_of_mem_countableBasis
dense_iff_exists_between πŸ“–mathematicalβ€”Dense
Set
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Dense.exists_between
OrderTopology.to_orderClosedTopology
dense_of_exists_between
dense_of_exists_between πŸ“–mathematicalSet
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Denseβ€”dense_iff_inter_open
IsOpen.exists_Ioo_subset
exists_Icc_mem_subset_of_mem_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Set.instMembership
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.instHasSubset
β€”exists_Icc_mem_subset_of_mem_nhdsLE
nhdsWithin_le_nhds
exists_Icc_mem_subset_of_mem_nhdsGE
Set.Icc_union_Icc_eq_Icc
nhdsLE_sup_nhdsGE
Filter.union_mem_sup
Set.union_subset
exists_Icc_mem_subset_of_mem_nhdsGE πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsWithin
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
Set.Icc
Set.instHasSubset
β€”not_isMax_iff
em
IsMax.Ici_eq
nhdsWithin_singleton
Set.Icc_self
Filter.HasBasis.mem_iff
nhdsGE_basis_of_exists_gt
Set.eq_empty_or_nonempty
Set.Icc_union_Ioo_eq_Ico
le_rfl
Set.union_empty
Ico_mem_nhdsGE
instClosedIciTopology
OrderTopology.to_orderClosedTopology
LT.lt.le
Icc_mem_nhdsGE
HasSubset.Subset.trans
Set.instIsTransSubset
Set.Icc_subset_Ico_right
exists_Icc_mem_subset_of_mem_nhdsLE πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsWithin
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
Set.Icc
Set.instHasSubset
β€”Function.Surjective.exists
Equiv.surjective
Set.Icc_toDual
exists_Icc_mem_subset_of_mem_nhdsGE
instOrderTopologyOrderDual
exists_Ico_subset_of_mem_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.instHasSubset
Set.Ico
β€”exists_Ico_subset_of_mem_nhds'
exists_Ico_subset_of_mem_nhds' πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.instMembership
Set.Ioc
Set.instHasSubset
Set.Ico
β€”Set.Ico_toDual
Set.Ioc_toDual
exists_Ioc_subset_of_mem_nhds'
instOrderTopologyOrderDual
LT.lt.dual
exists_Ioc_subset_of_mem_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.instHasSubset
Set.Ioc
β€”Filter.HasBasis.mem_iff
nhdsLE_basis_of_exists_lt
nhdsWithin_le_nhds
exists_Ioc_subset_of_mem_nhds' πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.instMembership
Set.Ico
Set.instHasSubset
Set.Ioc
β€”exists_Ioc_subset_of_mem_nhds
le_max_left
max_lt
HasSubset.Subset.trans
Set.instIsTransSubset
Set.Ioc_subset_Ioc_left
le_max_right
exists_countable_generateFrom_Ioi_Iio πŸ“–mathematicalβ€”Set.Countable
TopologicalSpace.generateFrom
setOf
Set
Set.instMembership
Set.Ioi
Set.Iio
β€”isEmpty_or_nonempty
Unique.instSubsingleton
IsEmpty.instSubsingleton
TopologicalSpace.exists_countable_of_generateFrom
OrderTopology.topology_eq_generate_intervals
Set.Countable.image
le_antisymm
TopologicalSpace.le_generateFrom_iff_subset_isOpen
TopologicalSpace.generateFrom_anti
Function.sometimes_spec
ge_mem_nhds πŸ“–mathematicalPreorder.toLTFilter.Eventually
Preorder.toLE
nhds
β€”Filter.Eventually.mono
gt_mem_nhds
le_of_lt
gt_mem_nhds πŸ“–mathematicalPreorder.toLTFilter.Eventually
nhds
β€”IsOpen.mem_nhds
isOpen_gt'
induced_orderTopology πŸ“–mathematicalPreorder.toLTOrderTopology
TopologicalSpace.induced
β€”induced_orderTopology'
le_of_lt
induced_orderTopology' πŸ“–mathematicalPreorder.toLT
Preorder.toLE
OrderTopology
TopologicalSpace.induced
β€”induced_topology_eq_preorder
induced_topology_eq_preorder πŸ“–mathematicalPreorder.toLT
Preorder.toLE
TopologicalSpace.induced
Preorder.topology
β€”le_antisymm
induced_topology_le_preorder
le_of_nhds_le_nhds
nhds_eq_order
nhds_induced
Filter.comap_inf
Filter.comap_iInf
iInf_congr_Prop
Filter.comap_principal
inf_le_inf
le_iInfβ‚‚
iInfβ‚‚_le_of_le
Filter.principal_mono
LE.le.trans_lt
Filter.le_principal_iff
Filter.univ_mem'
LT.lt.trans_le
induced_topology_le_preorder πŸ“–mathematicalPreorder.toLTTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
TopologicalSpace.induced
Preorder.topology
β€”le_of_nhds_le_nhds
nhds_induced
nhds_eq_order
iInf_congr_Prop
Filter.comap_inf
Filter.comap_iInf
Filter.comap_principal
inf_le_inf
le_iInfβ‚‚
iInfβ‚‚_le
instIsCountablyGenerated_atBot πŸ“–mathematicalβ€”Filter.IsCountablyGenerated
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”instIsCountablyGenerated_atTop
instOrderTopologyOrderDual
instSeparableSpaceOrderDual
instIsCountablyGenerated_atTop πŸ“–mathematicalβ€”Filter.IsCountablyGenerated
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Set.eq_empty_or_nonempty
TopologicalSpace.exists_countable_dense
Filter.atTop_eq_generate_of_not_bddAbove
Dense.exists_mem_open
isOpen_Ioi
instClosedIicTopology
OrderTopology.to_orderClosedTopology
LE.le.not_gt
Set.Countable.image
Filter.atTop_eq_pure_of_isTop
Filter.isCountablyGenerated_pure
instOrderTopologyOrderDual πŸ“–mathematicalβ€”OrderTopology
OrderDual
OrderDual.instTopologicalSpace
OrderDual.instPreorder
β€”OrderTopology.topology_eq_generate_intervals
instSecondCountableTopologyOfOrderTopologyOfCountable πŸ“–mathematicalβ€”SecondCountableTopologyβ€”Set.Countable.mono
Set.Countable.union
Set.countable_range
OrderTopology.topology_eq_generate_intervals
isOpen_Iio' πŸ“–mathematicalβ€”IsOpen
Set.Iio
β€”isOpen_gt'
isOpen_Ioi' πŸ“–mathematicalβ€”IsOpen
Set.Ioi
β€”isOpen_lt'
isOpen_gt' πŸ“–mathematicalβ€”IsOpen
setOf
Preorder.toLT
β€”isOpen_iff_generate_intervals
isOpen_iff_generate_intervals πŸ“–mathematicalβ€”IsOpen
TopologicalSpace.GenerateOpen
setOf
Set
Set.Ioi
Set.Iio
β€”OrderTopology.topology_eq_generate_intervals
isOpen_lt' πŸ“–mathematicalβ€”IsOpen
setOf
Preorder.toLT
β€”isOpen_iff_generate_intervals
isTopologicalBasis_biInter_Ioi_Iio_of_generateFrom πŸ“–mathematicalTopologicalSpace.generateFrom
setOf
Set
Set.instMembership
Set.Ioi
Set.Iio
TopologicalSpace.IsTopologicalBasis
Set.instHasSubset
Set.Finite
Set.instInter
Set.iInter
β€”TopologicalSpace.IsTopologicalBasis.of_isOpen_of_subset
IsOpen.inter
Set.Finite.isOpen_biInter
TopologicalSpace.isOpen_generateFrom_of_mem
TopologicalSpace.isTopologicalBasis_of_subbasis
Set.ext
Set.Finite.subset
Set.finite_range
Set.sInter_eq_biInter
Set.biInter_union
Set.biInter_range
Set.biInter_eq_iInter
Set.iInter_coe_set
le_mem_nhds πŸ“–mathematicalPreorder.toLTFilter.Eventually
Preorder.toLE
nhds
β€”Filter.Eventually.mono
lt_mem_nhds
le_of_lt
lt_mem_nhds πŸ“–mathematicalPreorder.toLTFilter.Eventually
nhds
β€”IsOpen.mem_nhds
isOpen_lt'
mem_nhds_iff_exists_Ioo_subset πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
Set.instMembership
Set.Ioo
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.instHasSubset
β€”mem_nhds_iff_exists_Ioo_subset'
NoMinOrder.exists_lt
NoMaxOrder.exists_gt
mem_nhds_iff_exists_Ioo_subset' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhds
Set.instMembership
Set.Ioo
Set.instHasSubset
β€”exists_Ico_subset_of_mem_nhds
exists_Ioc_subset_of_mem_nhds
Set.union_subset
Set.Ioc_union_Ico_eq_Ioo
Filter.mem_of_superset
Ioo_mem_nhds
OrderTopology.to_orderClosedTopology
nhdsGE_basis πŸ“–mathematicalβ€”Filter.HasBasis
nhdsWithin
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set.Ico
β€”nhdsGE_basis_of_exists_gt
NoMaxOrder.exists_gt
nhdsGE_basis_of_exists_gt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.HasBasis
nhdsWithin
Set.Ici
Set.Ico
β€”Filter.hasBasis_biInf_principal
lt_min
Set.Ico_subset_Ico_right
min_le_left
min_le_right
nhdsGE_eq_iInf_principal
nhdsGE_eq_iInf_inf_principal πŸ“–mathematicalβ€”nhdsWithin
Set.Ici
Filter
Filter.instInf
iInf
Filter.instInfSet
Preorder.toLT
Filter.principal
Set.Iio
β€”nhdsWithin.eq_1
nhds_eq_order
le_antisymm
inf_le_inf_right
inf_le_right
le_inf
LE.le.trans
le_iInfβ‚‚
Filter.principal_mono
Set.Ici_subset_Ioi
inf_le_left
nhdsGE_eq_iInf_principal πŸ“–mathematicalPreorder.toLTnhdsWithin
Set.Ici
iInf
Filter
Filter.instInfSet
Filter.principal
Set.Ico
β€”nhdsGE_eq_iInf_inf_principal
biInf_inf
iInf_congr_Prop
Filter.inf_principal
Set.Iio_inter_Ici
nhdsLE_basis πŸ“–mathematicalβ€”Filter.HasBasis
nhdsWithin
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set.Ioc
β€”nhdsLE_basis_of_exists_lt
NoMinOrder.exists_lt
nhdsLE_basis_of_exists_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.HasBasis
nhdsWithin
Set.Iic
Set.Ioc
β€”Set.Ico_toDual
nhdsGE_basis_of_exists_gt
instOrderTopologyOrderDual
nhdsLE_eq_iInf_inf_principal πŸ“–mathematicalβ€”nhdsWithin
Set.Iic
Filter
Filter.instInf
iInf
Filter.instInfSet
Preorder.toLT
Filter.principal
Set.Ioi
β€”nhdsGE_eq_iInf_inf_principal
instOrderTopologyOrderDual
nhdsLE_eq_iInf_principal πŸ“–mathematicalPreorder.toLTnhdsWithin
Set.Iic
iInf
Filter
Filter.instInfSet
Filter.principal
Set.Ioc
β€”nhdsLE_eq_iInf_inf_principal
biInf_inf
iInf_congr_Prop
Filter.inf_principal
nhds_basis_Ioo πŸ“–mathematicalβ€”Filter.HasBasis
nhds
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Ioo
β€”nhds_basis_Ioo'
NoMinOrder.exists_lt
NoMaxOrder.exists_gt
nhds_basis_Ioo' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.HasBasis
nhds
Set.Ioo
β€”mem_nhds_iff_exists_Ioo_subset'
nhds_bot_basis πŸ“–mathematicalβ€”Filter.HasBasis
nhds
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set.Iio
β€”nhds_top_basis
instOrderTopologyOrderDual
OrderDual.instNontrivial
nhds_bot_basis_Iic πŸ“–mathematicalβ€”Filter.HasBasis
nhds
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set.Iic
β€”nhds_top_basis_Ici
instOrderTopologyOrderDual
OrderDual.instNontrivial
OrderDual.denselyOrdered
nhds_bot_order πŸ“–mathematicalβ€”nhds
Bot.bot
OrderBot.toBot
Preorder.toLE
iInf
Filter
Filter.instInfSet
Preorder.toLT
Filter.principal
Set.Iio
β€”nhds_eq_order
iInf_congr_Prop
IsMin.Iio_eq
iInf_neg
iInf_top
inf_of_le_right
nhds_eq_order πŸ“–mathematicalβ€”nhds
Filter
Filter.instInf
iInf
Filter.instInfSet
Set
Set.instMembership
Set.Iio
Filter.principal
Set.Ioi
β€”OrderTopology.topology_eq_generate_intervals
TopologicalSpace.nhds_generateFrom
iInf_congr_Prop
iInf_or
iInf_and
iInf_exists
iInf_inf_eq
iInf_comm
iInf_iInf_eq_left
nhds_order_unbounded πŸ“–mathematicalPreorder.toLTnhds
iInf
Filter
Filter.instInfSet
Filter.principal
Set.Ioo
β€”nhds_eq_order
iInf_congr_Prop
nhds_top_basis πŸ“–mathematicalβ€”Filter.HasBasis
nhds
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set.Ioi
β€”Ne.lt_top
exists_ne
Set.Iic_top
nhdsWithin_univ
Set.Ioc_top
nhdsLE_basis_of_exists_lt
nhds_top_basis_Ici πŸ“–mathematicalβ€”Filter.HasBasis
nhds
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set.Ici
β€”Filter.HasBasis.to_hasBasis
nhds_top_basis
exists_between
Set.Ici_subset_Ioi
Set.Ioi_subset_Ici_self
nhds_top_order πŸ“–mathematicalβ€”nhds
Top.top
OrderTop.toTop
Preorder.toLE
iInf
Filter
Filter.instInfSet
Preorder.toLT
Filter.principal
Set.Ioi
β€”nhds_eq_order
iInf_congr_Prop
IsMax.Ioi_eq
iInf_neg
iInf_top
inf_of_le_left
orderTopology_of_ordConnected πŸ“–mathematicalβ€”OrderTopology
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Subtype.preorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”StrictMono.induced_topology_eq_preorder
Subtype.strictMono_coe
Subtype.range_val
order_separated πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsOpen
Set
Set.instMembership
β€”LT.lt.exists_disjoint_Iio_Ioi
isOpen_gt'
isOpen_lt'
pi_Icc_mem_nhds πŸ“–mathematicalOrderTopology
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.Icc
Pi.preorder
β€”set_pi_mem_nhds
Set.finite_univ
Icc_mem_nhds
OrderTopology.to_orderClosedTopology
Set.pi_univ_Icc
pi_Icc_mem_nhds' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.Icc
Pi.preorder
β€”pi_Icc_mem_nhds
pi_Ici_mem_nhds πŸ“–mathematicalOrderTopology
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.Ici
Pi.preorder
β€”set_pi_mem_nhds
Set.toFinite
Subtype.finite
Ici_mem_nhds
instClosedIicTopology
OrderTopology.to_orderClosedTopology
Set.pi_univ_Ici
pi_Ici_mem_nhds' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.Ici
Pi.preorder
β€”pi_Ici_mem_nhds
pi_Ico_mem_nhds πŸ“–mathematicalOrderTopology
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.Ico
Pi.preorder
β€”Filter.mem_of_superset
set_pi_mem_nhds
Set.finite_univ
Ico_mem_nhds
OrderTopology.to_orderClosedTopology
Set.pi_univ_Ico_subset
pi_Ico_mem_nhds' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.Ico
Pi.preorder
β€”pi_Ico_mem_nhds
pi_Iic_mem_nhds πŸ“–mathematicalOrderTopology
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.Iic
Pi.preorder
β€”set_pi_mem_nhds
Set.toFinite
Subtype.finite
Iic_mem_nhds
instClosedIciTopology
OrderTopology.to_orderClosedTopology
Set.pi_univ_Iic
pi_Iic_mem_nhds' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.Iic
Pi.preorder
β€”pi_Iic_mem_nhds
pi_Iio_mem_nhds πŸ“–mathematicalOrderTopology
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.Iio
Pi.preorder
β€”Filter.mem_of_superset
set_pi_mem_nhds
Set.finite_univ
Iio_mem_nhds
instClosedIciTopology
OrderTopology.to_orderClosedTopology
Set.pi_univ_Iio_subset
pi_Iio_mem_nhds' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.Iio
Pi.preorder
β€”pi_Iio_mem_nhds
pi_Ioc_mem_nhds πŸ“–mathematicalOrderTopology
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.Ioc
Pi.preorder
β€”Filter.mem_of_superset
set_pi_mem_nhds
Set.finite_univ
Ioc_mem_nhds
OrderTopology.to_orderClosedTopology
Set.pi_univ_Ioc_subset
pi_Ioc_mem_nhds' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.Ioc
Pi.preorder
β€”pi_Ioc_mem_nhds
pi_Ioi_mem_nhds πŸ“–mathematicalOrderTopology
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.Ioi
Pi.preorder
β€”pi_Iio_mem_nhds
instOrderTopologyOrderDual
pi_Ioi_mem_nhds' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.Ioi
Pi.preorder
β€”pi_Ioi_mem_nhds
pi_Ioo_mem_nhds πŸ“–mathematicalOrderTopology
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.Ioo
Pi.preorder
β€”Filter.mem_of_superset
set_pi_mem_nhds
Set.finite_univ
Ioo_mem_nhds
OrderTopology.to_orderClosedTopology
Set.pi_univ_Ioo_subset
pi_Ioo_mem_nhds' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.Ioo
Pi.preorder
β€”pi_Ioo_mem_nhds
tendstoIccClassNhds πŸ“–mathematicalβ€”Filter.TendstoIxxClass
Set.Icc
nhds
β€”nhds_eq_order
iInf_subtype'
Filter.HasBasis.tendstoIxxClass
Filter.HasBasis.inf
Filter.hasBasis_iInf_principal_finite
Set.OrdConnected.out
Set.OrdConnected.inter
Set.ordConnected_biInter
Set.ordConnected_Ioi
Set.ordConnected_Iio
tendstoIccClassNhdsPi πŸ“–mathematicalOrderTopologyFilter.TendstoIxxClass
Set.Icc
Pi.preorder
nhds
Pi.topologicalSpace
β€”nhds_pi
Filter.pi.eq_1
Filter.smallSets_iInf
Filter.smallSets_comap_eq_comap_image
Continuous.tendsto
continuous_apply
Filter.Tendsto.smallSets_mono
Filter.Tendsto.Icc
tendstoIccClassNhds
Filter.Tendsto.comp
Filter.tendsto_fst
Filter.tendsto_snd
Filter.univ_mem'
Set.image_subset_iff
tendstoIcoClassNhds πŸ“–mathematicalβ€”Filter.TendstoIxxClass
Set.Ico
nhds
β€”Filter.tendstoIxxClass_of_subset
Set.Ico_subset_Icc_self
tendstoIccClassNhds
tendstoIocClassNhds πŸ“–mathematicalβ€”Filter.TendstoIxxClass
Set.Ioc
nhds
β€”Filter.tendstoIxxClass_of_subset
Set.Ioc_subset_Icc_self
tendstoIccClassNhds
tendstoIooClassNhds πŸ“–mathematicalβ€”Filter.TendstoIxxClass
Set.Ioo
nhds
β€”Filter.tendstoIxxClass_of_subset
Set.Ioo_subset_Icc_self
tendstoIccClassNhds
tendstoIxxNhdsWithin πŸ“–mathematicalβ€”Filter.TendstoIxxClass
nhdsWithin
β€”Filter.tendstoIxxClass_inf
tendsto_nhds_bot_mono πŸ“–β€”Filter.Tendsto
nhds
Bot.bot
OrderBot.toBot
Preorder.toLE
Filter.EventuallyLE
β€”β€”tendsto_nhds_top_mono
instOrderTopologyOrderDual
tendsto_nhds_bot_mono' πŸ“–β€”Filter.Tendsto
nhds
Bot.bot
OrderBot.toBot
Preorder.toLE
Pi.hasLe
β€”β€”tendsto_nhds_bot_mono
Filter.Eventually.of_forall
tendsto_nhds_top_mono πŸ“–β€”Filter.Tendsto
nhds
Top.top
OrderTop.toTop
Preorder.toLE
Filter.EventuallyLE
β€”β€”nhds_top_order
Filter.mp_mem
Filter.univ_mem'
lt_of_lt_of_le
tendsto_nhds_top_mono' πŸ“–β€”Filter.Tendsto
nhds
Top.top
OrderTop.toTop
Preorder.toLE
Pi.hasLe
β€”β€”tendsto_nhds_top_mono
Filter.Eventually.of_forall
tendsto_of_tendsto_of_tendsto_of_le_of_le πŸ“–β€”Filter.Tendsto
nhds
Pi.hasLe
Preorder.toLE
β€”β€”tendsto_of_tendsto_of_tendsto_of_le_of_le'
Filter.Eventually.of_forall
tendsto_of_tendsto_of_tendsto_of_le_of_le' πŸ“–β€”Filter.Tendsto
nhds
Filter.Eventually
Preorder.toLE
β€”β€”Filter.Tendsto.of_smallSets
Filter.Tendsto.Icc
tendstoIccClassNhds
Filter.Eventually.and
tendsto_order πŸ“–mathematicalβ€”Filter.Tendsto
nhds
Filter.Eventually
Preorder.toLT
β€”nhds_eq_order
tendsto_order_unbounded πŸ“–mathematicalPreorder.toLT
Filter.Eventually
Filter.Tendsto
nhds
β€”nhds_order_unbounded

---

← Back to Index