Documentation Verification Report

Bornology

📁 Source: Mathlib/Topology/Order/Bornology.lean

Statistics

MetricCount
DefinitionsBornology, IsOrderBornology, orderBornology
3
TheoremsisBounded, isBounded_inter, isBounded, isBounded_inter, bddAbove, bddBelow, subset_Icc_sInf_sSup, isBounded_iff_bddBelow_bddAbove, instIsOrderBornology, instIsOrderBornology, instIsOrderBornology, isBounded_iff_bddBelow_bddAbove, isOrderBornology_iff_eq_orderBornology, orderBornology_isBounded
14
Total17

BddAbove

Theorems

NameKindAssumesProvesValidatesDepends On
isBounded 📖mathematicalBddAbove
Preorder.toLE
BddBelow
Bornology.IsBoundedisBounded_iff_bddBelow_bddAbove
isBounded_inter 📖mathematicalBddAbove
Preorder.toLE
BddBelow
Bornology.IsBounded
Set
Set.instInter
isBounded
mono
Set.inter_subset_left
BddBelow.mono
Set.inter_subset_right

BddBelow

Theorems

NameKindAssumesProvesValidatesDepends On
isBounded 📖mathematicalBddBelow
Preorder.toLE
BddAbove
Bornology.IsBoundedisBounded_iff_bddBelow_bddAbove
isBounded_inter 📖mathematicalBddBelow
Preorder.toLE
BddAbove
Bornology.IsBounded
Set
Set.instInter
isBounded
mono
Set.inter_subset_left
BddAbove.mono
Set.inter_subset_right

Bornology.IsBounded

Theorems

NameKindAssumesProvesValidatesDepends On
bddAbove 📖mathematicalBornology.IsBoundedBddAbove
Preorder.toLE
isBounded_iff_bddBelow_bddAbove
bddBelow 📖mathematicalBornology.IsBoundedBddBelow
Preorder.toLE
isBounded_iff_bddBelow_bddAbove
subset_Icc_sInf_sSup 📖mathematicalBornology.IsBoundedSet
Set.instHasSubset
Set.Icc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
subset_Icc_csInf_csSup
bddBelow
bddAbove

IsOrderBornology

Theorems

NameKindAssumesProvesValidatesDepends On
isBounded_iff_bddBelow_bddAbove 📖mathematicalBornology.IsBounded
BddBelow
Preorder.toLE
BddAbove

OrderDual

Theorems

NameKindAssumesProvesValidatesDepends On
instIsOrderBornology 📖mathematicalIsOrderBornology
OrderDual
instBornologyOrderDual
instPreorder
isBounded_preimage_toDual
bddBelow_preimage_toDual
bddAbove_preimage_toDual
isBounded_iff_bddBelow_bddAbove

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
instIsOrderBornology 📖mathematicalIsOrderBornologyinstBornology
preorder

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
instIsOrderBornology 📖mathematicalIsOrderBornology
instBornology
instPreorder
Bornology.isBounded_image_fst_and_snd
bddBelow_prod
bddAbove_prod
isBounded_iff_bddBelow_bddAbove

(root)

Definitions

NameCategoryTheorems
Bornology 📖CompData
IsOrderBornology 📖CompData
8 mathmath: Real.instIsOrderBornology, Prod.instIsOrderBornology, NNReal.instIsOrderBornology, OrderDual.instIsOrderBornology, IsOrderBornology.of_isCompactIcc, Nat.instIsOrderBornology, isOrderBornology_iff_eq_orderBornology, Int.instIsOrderBornology
orderBornology 📖CompOp
2 mathmath: orderBornology_isBounded, isOrderBornology_iff_eq_orderBornology

Theorems

NameKindAssumesProvesValidatesDepends On
isBounded_iff_bddBelow_bddAbove 📖mathematicalBornology.IsBounded
BddBelow
Preorder.toLE
BddAbove
IsOrderBornology.isBounded_iff_bddBelow_bddAbove
isOrderBornology_iff_eq_orderBornology 📖mathematicalIsOrderBornology
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
orderBornology
Bornology.ext
Filter.ext
Bornology.isBounded_compl_iff
IsOrderBornology.isBounded_iff_bddBelow_bddAbove
orderBornology_isBounded
orderBornology_isBounded 📖mathematicalBornology.IsBounded
orderBornology
BddBelow
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BddAbove
compl_compl

---

← Back to Index