Documentation Verification Report

AlexDisc

πŸ“ Source: Mathlib/Topology/Order/Category/AlexDisc.lean

Statistics

MetricCount
DefinitionsAlexDisc, mk, category, concreteCategory, instCoeSortType, instHasForgetToTop, of, toTopCat, alexDiscEquivPreord
9
Theoremsmk_hom, mk_inv, coe_forgetToTop, coe_of, forgetToTop_faithful, forgetToTop_full, forgetToTop_of, is_alexandrovDiscrete, alexDiscEquivPreord_counitIso, alexDiscEquivPreord_functor, alexDiscEquivPreord_inverse_map, alexDiscEquivPreord_inverse_obj_carrier, alexDiscEquivPreord_inverse_obj_str, alexDiscEquivPreord_unitIso
14
Total23

AlexDisc

Definitions

NameCategoryTheorems
category πŸ“–CompOp
12 mathmath: alexDiscEquivPreord_inverse_obj_carrier, alexDiscEquivPreord_inverse_obj_str, alexDiscEquivPreord_inverse_map, forgetToTop_faithful, Iso.mk_inv, alexDiscEquivPreord_unitIso, coe_forgetToTop, forgetToTop_full, Iso.mk_hom, alexDiscEquivPreord_counitIso, forgetToTop_of, alexDiscEquivPreord_functor
concreteCategory πŸ“–CompOp
10 mathmath: alexDiscEquivPreord_inverse_map, forgetToTop_faithful, Iso.mk_inv, alexDiscEquivPreord_unitIso, coe_forgetToTop, forgetToTop_full, Iso.mk_hom, alexDiscEquivPreord_counitIso, forgetToTop_of, alexDiscEquivPreord_functor
instCoeSortType πŸ“–CompOpβ€”
instHasForgetToTop πŸ“–CompOp
7 mathmath: forgetToTop_faithful, alexDiscEquivPreord_unitIso, coe_forgetToTop, forgetToTop_full, alexDiscEquivPreord_counitIso, forgetToTop_of, alexDiscEquivPreord_functor
of πŸ“–CompOp
5 mathmath: alexDiscEquivPreord_inverse_map, alexDiscEquivPreord_unitIso, alexDiscEquivPreord_counitIso, coe_of, forgetToTop_of
toTopCat πŸ“–CompOp
14 mathmath: alexDiscEquivPreord_inverse_obj_carrier, alexDiscEquivPreord_inverse_obj_str, alexDiscEquivPreord_inverse_map, forgetToTop_faithful, Iso.mk_inv, alexDiscEquivPreord_unitIso, coe_forgetToTop, forgetToTop_full, Iso.mk_hom, is_alexandrovDiscrete, alexDiscEquivPreord_counitIso, coe_of, forgetToTop_of, alexDiscEquivPreord_functor

Theorems

NameKindAssumesProvesValidatesDepends On
coe_forgetToTop πŸ“–mathematicalβ€”TopCat.carrier
CategoryTheory.Functor.obj
AlexDisc
category
TopCat
TopCat.instCategory
CategoryTheory.forgetβ‚‚
ContinuousMap
toTopCat
TopCat.str
ContinuousMap.instFunLike
concreteCategory
TopCat.instConcreteCategoryContinuousMapCarrier
instHasForgetToTop
β€”β€”
coe_of πŸ“–mathematicalβ€”TopCat.carrier
toTopCat
of
β€”β€”
forgetToTop_faithful πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
AlexDisc
category
TopCat
TopCat.instCategory
CategoryTheory.forgetβ‚‚
ContinuousMap
TopCat.carrier
toTopCat
TopCat.str
ContinuousMap.instFunLike
concreteCategory
TopCat.instConcreteCategoryContinuousMapCarrier
instHasForgetToTop
β€”CategoryTheory.ConcreteCategory.ext
ContinuousMap.ext
CategoryTheory.ConcreteCategory.congr_hom
forgetToTop_full πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
AlexDisc
category
TopCat
TopCat.instCategory
CategoryTheory.forgetβ‚‚
ContinuousMap
TopCat.carrier
toTopCat
TopCat.str
ContinuousMap.instFunLike
concreteCategory
TopCat.instConcreteCategoryContinuousMapCarrier
instHasForgetToTop
β€”β€”
forgetToTop_of πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
AlexDisc
category
TopCat
TopCat.instCategory
CategoryTheory.forgetβ‚‚
ContinuousMap
TopCat.carrier
toTopCat
TopCat.str
ContinuousMap.instFunLike
concreteCategory
TopCat.instConcreteCategoryContinuousMapCarrier
instHasForgetToTop
of
TopCat.of
β€”β€”
is_alexandrovDiscrete πŸ“–mathematicalβ€”AlexandrovDiscrete
TopCat.carrier
toTopCat
TopCat.str
β€”β€”

AlexDisc.Iso

Definitions

NameCategoryTheorems
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
AlexDisc
AlexDisc.category
CategoryTheory.ConcreteCategory.ofHom
ContinuousMap
TopCat.carrier
AlexDisc.toTopCat
TopCat.str
ContinuousMap.instFunLike
AlexDisc.concreteCategory
toContinuousMap
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
β€”β€”
mk_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
AlexDisc
AlexDisc.category
CategoryTheory.ConcreteCategory.ofHom
ContinuousMap
TopCat.carrier
AlexDisc.toTopCat
TopCat.str
ContinuousMap.instFunLike
AlexDisc.concreteCategory
toContinuousMap
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
β€”β€”

(root)

Definitions

NameCategoryTheorems
AlexDisc πŸ“–CompData
12 mathmath: alexDiscEquivPreord_inverse_obj_carrier, alexDiscEquivPreord_inverse_obj_str, alexDiscEquivPreord_inverse_map, AlexDisc.forgetToTop_faithful, AlexDisc.Iso.mk_inv, alexDiscEquivPreord_unitIso, AlexDisc.coe_forgetToTop, AlexDisc.forgetToTop_full, AlexDisc.Iso.mk_hom, alexDiscEquivPreord_counitIso, AlexDisc.forgetToTop_of, alexDiscEquivPreord_functor
alexDiscEquivPreord πŸ“–CompOp
6 mathmath: alexDiscEquivPreord_inverse_obj_carrier, alexDiscEquivPreord_inverse_obj_str, alexDiscEquivPreord_inverse_map, alexDiscEquivPreord_unitIso, alexDiscEquivPreord_counitIso, alexDiscEquivPreord_functor

Theorems

NameKindAssumesProvesValidatesDepends On
alexDiscEquivPreord_counitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.counitIso
AlexDisc
Preord
AlexDisc.category
Preord.instCategory
alexDiscEquivPreord
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
AlexDisc.of
Topology.WithUpperSet
Preord.carrier
Topology.WithUpperSet.instTopologicalSpace
Preord.str
CategoryTheory.ConcreteCategory.ofHom
ContinuousMap
TopCat.carrier
AlexDisc.toTopCat
TopCat.str
ContinuousMap.instFunLike
AlexDisc.concreteCategory
Topology.WithUpperSet.map
Preord.Hom.hom
TopCat
TopCat.instCategory
CategoryTheory.forgetβ‚‚
TopCat.instConcreteCategoryContinuousMapCarrier
AlexDisc.instHasForgetToTop
topToPreord
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
OrderIso
Preorder.toLE
OrderIso.symm
Specialization
Specialization.instPreorder
orderIsoSpecializationWithUpperSetTopology
β€”β€”
alexDiscEquivPreord_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
AlexDisc
Preord
AlexDisc.category
Preord.instCategory
alexDiscEquivPreord
CategoryTheory.Functor.comp
TopCat
TopCat.instCategory
CategoryTheory.forgetβ‚‚
ContinuousMap
TopCat.carrier
AlexDisc.toTopCat
TopCat.str
ContinuousMap.instFunLike
AlexDisc.concreteCategory
TopCat.instConcreteCategoryContinuousMapCarrier
AlexDisc.instHasForgetToTop
topToPreord
β€”β€”
alexDiscEquivPreord_inverse_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Preord
Preord.instCategory
AlexDisc
AlexDisc.category
CategoryTheory.Equivalence.inverse
alexDiscEquivPreord
CategoryTheory.ConcreteCategory.ofHom
ContinuousMap
TopCat.carrier
AlexDisc.toTopCat
TopCat.str
ContinuousMap.instFunLike
AlexDisc.concreteCategory
AlexDisc.of
Topology.WithUpperSet
Preord.carrier
Topology.WithUpperSet.instTopologicalSpace
Preord.str
Topology.WithUpperSet.map
Preord.Hom.hom
β€”β€”
alexDiscEquivPreord_inverse_obj_carrier πŸ“–mathematicalβ€”TopCat.carrier
AlexDisc.toTopCat
CategoryTheory.Functor.obj
Preord
Preord.instCategory
AlexDisc
AlexDisc.category
CategoryTheory.Equivalence.inverse
alexDiscEquivPreord
Topology.WithUpperSet
Preord.carrier
β€”β€”
alexDiscEquivPreord_inverse_obj_str πŸ“–mathematicalβ€”TopCat.str
AlexDisc.toTopCat
CategoryTheory.Functor.obj
Preord
Preord.instCategory
AlexDisc
AlexDisc.category
CategoryTheory.Equivalence.inverse
alexDiscEquivPreord
Topology.WithUpperSet.instTopologicalSpace
Preord.carrier
Preord.str
β€”β€”
alexDiscEquivPreord_unitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.unitIso
AlexDisc
Preord
AlexDisc.category
Preord.instCategory
alexDiscEquivPreord
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
TopCat
TopCat.instCategory
CategoryTheory.forgetβ‚‚
ContinuousMap
TopCat.carrier
AlexDisc.toTopCat
TopCat.str
ContinuousMap.instFunLike
AlexDisc.concreteCategory
TopCat.instConcreteCategoryContinuousMapCarrier
AlexDisc.instHasForgetToTop
topToPreord
AlexDisc.of
Topology.WithUpperSet
Preord.carrier
Topology.WithUpperSet.instTopologicalSpace
Preord.str
CategoryTheory.ConcreteCategory.ofHom
Topology.WithUpperSet.map
Preord.Hom.hom
CategoryTheory.Functor.obj
Homeomorph
homeoWithUpperSetTopologyorderIso
AlexDisc.is_alexandrovDiscrete
β€”β€”

---

← Back to Index