Documentation Verification Report

Compact

πŸ“ Source: Mathlib/Topology/Order/Compact.lean

Statistics

MetricCount
DefinitionsCompactIccSpace
1
TheoremsisCompact_Icc, mk', mk'', toCompactIccSpace, bddAbove_range_of_hasCompactMulSupport, bddAbove_range_of_hasCompactSupport, bddBelow_range_of_hasCompactMulSupport, bddBelow_range_of_hasCompactSupport, exists_forall_ge, exists_forall_ge', exists_forall_ge_of_hasCompactMulSupport, exists_forall_ge_of_hasCompactSupport, exists_forall_le, exists_forall_le', exists_forall_le_of_hasCompactMulSupport, exists_forall_le_of_hasCompactSupport, exists_isMaxOn', exists_isMinOn', image_Icc, image_Icc_of_antitoneOn, image_Icc_of_monotoneOn, image_uIcc, image_uIcc_eq_Icc, le_sSup_image_Icc, sInf_image_Icc_le, bddAbove, bddAbove_image, bddBelow, bddBelow_image, continuous_sInf, continuous_sSup, exists_forall_le', exists_isGLB, exists_isGreatest, exists_isLUB, exists_isLeast, exists_isLocalMax_mem_open, exists_isLocalMin_mem_open, exists_isMaxOn, exists_isMaxOn_mem_subset, exists_isMinOn, exists_isMinOn_mem_subset, exists_sInf_image_eq, exists_sInf_image_eq_and_le, exists_sSup_image_eq, exists_sSup_image_eq_and_ge, isGLB_sInf, isGreatest_sSup, isLUB_sSup, isLeast_sInf, lt_sInf_iff_of_continuous, sInf_mem, sSup_lt_iff_of_continuous, sSup_mem, compact_Icc_space', atBot_atTop_le_cocompact, atBot_le_cocompact, atTop_le_cocompact, cocompact_eq_atBot, cocompact_eq_atBot_atTop, cocompact_eq_atTop, cocompact_le_atBot, cocompact_le_atBot_atTop, cocompact_le_atTop, compactSpace_Icc, compactSpace_of_completeLinearOrder, eq_Icc_of_connected_compact, instCompactIccSpaceForall, instCompactIccSpaceOrderDual, instCompactIccSpaceProd, isCompact_Ico_iff, isCompact_Ioc_iff, isCompact_Ioo_iff, isCompact_uIcc
74
Total75

CompactIccSpace

Theorems

NameKindAssumesProvesValidatesDepends On
isCompact_Icc πŸ“–mathematicalβ€”IsCompact
Set.Icc
β€”β€”
mk' πŸ“–mathematicalIsCompact
Set.Icc
CompactIccSpaceβ€”by_cases
Set.Icc_eq_empty
isCompact_empty
mk'' πŸ“–mathematicalIsCompact
Set.Icc
PartialOrder.toPreorder
CompactIccSpaceβ€”mk'
LE.le.eq_or_lt
Set.Icc_self

ConditionallyCompleteLinearOrder

Theorems

NameKindAssumesProvesValidatesDepends On
toCompactIccSpace πŸ“–mathematicalβ€”CompactIccSpace
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
toConditionallyCompleteLattice
β€”isCompact_Icc

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
bddAbove_range_of_hasCompactMulSupport πŸ“–mathematicalContinuous
HasCompactMulSupport
BddAbove
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.range
β€”bddBelow_range_of_hasCompactMulSupport
instClosedIicTopologyOrderDual
bddAbove_range_of_hasCompactSupport πŸ“–mathematicalContinuous
HasCompactSupport
BddAbove
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.range
β€”bddBelow_range_of_hasCompactSupport
instClosedIicTopologyOrderDual
bddBelow_range_of_hasCompactMulSupport πŸ“–mathematicalContinuous
HasCompactMulSupport
BddBelow
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.range
β€”IsCompact.bddBelow
One.instNonempty
HasCompactMulSupport.isCompact_range
bddBelow_range_of_hasCompactSupport πŸ“–mathematicalContinuous
HasCompactSupport
BddBelow
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.range
β€”IsCompact.bddBelow
Zero.instNonempty
HasCompactSupport.isCompact_range
exists_forall_ge πŸ“–mathematicalContinuous
Filter.Tendsto
Filter.cocompact
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLEβ€”exists_forall_le
instClosedIicTopologyOrderDual
exists_forall_ge' πŸ“–β€”Continuous
Filter.Eventually
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.cocompact
β€”β€”exists_forall_le'
instClosedIicTopologyOrderDual
exists_forall_ge_of_hasCompactMulSupport πŸ“–mathematicalContinuous
HasCompactMulSupport
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”exists_forall_le_of_hasCompactMulSupport
instClosedIicTopologyOrderDual
exists_forall_ge_of_hasCompactSupport πŸ“–mathematicalContinuous
HasCompactSupport
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”exists_forall_le_of_hasCompactSupport
instClosedIicTopologyOrderDual
exists_forall_le πŸ“–mathematicalContinuous
Filter.Tendsto
Filter.cocompact
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLEβ€”exists_forall_le'
Filter.Tendsto.eventually
Filter.eventually_ge_atTop
exists_forall_le' πŸ“–β€”Continuous
Filter.Eventually
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.cocompact
β€”β€”ContinuousOn.exists_isMinOn'
continuousOn
isClosed_univ
Set.mem_univ
Filter.principal_univ
inf_top_eq
exists_forall_le_of_hasCompactMulSupport πŸ“–mathematicalContinuous
HasCompactMulSupport
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”IsCompact.exists_isLeast
HasCompactMulSupport.isCompact_range
Set.range_nonempty
Set.forall_mem_range
mem_lowerBounds
exists_forall_le_of_hasCompactSupport πŸ“–mathematicalContinuous
HasCompactSupport
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”IsCompact.exists_isLeast
HasCompactSupport.isCompact_range
Set.range_nonempty
Set.forall_mem_range
mem_lowerBounds

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isMaxOn' πŸ“–mathematicalContinuousOn
Set
Set.instMembership
Filter.Eventually
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter
Filter.instInf
Filter.cocompact
Filter.principal
IsMaxOnβ€”exists_isMinOn'
instClosedIicTopologyOrderDual
exists_isMinOn' πŸ“–mathematicalContinuousOn
Set
Set.instMembership
Filter.Eventually
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter
Filter.instInf
Filter.cocompact
Filter.principal
IsMinOnβ€”Filter.HasBasis.eventually_iff
Filter.HasBasis.inf_principal
Filter.hasBasis_cocompact
Set.insert_subset_iff
Set.inter_subset_right
IsCompact.exists_isMinOn
IsCompact.insert
IsCompact.inter_right
Set.insert_nonempty
mono
LE.le.trans
image_Icc πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ContinuousOn
Set.Icc
Set.image
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”eq_Icc_of_connected_compact
Set.Nonempty.image
Set.nonempty_Icc
IsPreconnected.image
isPreconnected_Icc
IsCompact.image_of_continuousOn
CompactIccSpace.isCompact_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
image_Icc_of_antitoneOn πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ContinuousOn
Set.Icc
AntitoneOn
Set.imageβ€”Set.Icc_toDual
image_Icc_of_monotoneOn
instOrderTopologyOrderDual
AntitoneOn.dual_right
image_Icc_of_monotoneOn πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ContinuousOn
Set.Icc
MonotoneOn
Set.imageβ€”image_Icc
MonotoneOn.sInf_image_Icc
MonotoneOn.sSup_image_Icc
image_uIcc πŸ“–mathematicalContinuousOn
Set.uIcc
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.image
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
β€”image_uIcc_eq_Icc
Set.uIcc_of_le
csInf_le_csSup
bddBelow_Icc
bddAbove_Icc
Set.Nonempty.image
Set.nonempty_uIcc
image_uIcc_eq_Icc πŸ“–mathematicalContinuousOn
Set.uIcc
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.image
Set.Icc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”image_Icc
min_le_max
le_sSup_image_Icc πŸ“–mathematicalContinuousOn
Set.Icc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set
Set.instMembership
Preorder.toLE
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.image
β€”Set.mem_image_of_mem
image_Icc
LE.le.trans
sInf_image_Icc_le πŸ“–mathematicalContinuousOn
Set.Icc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set
Set.instMembership
Preorder.toLE
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set.image
β€”Set.mem_image_of_mem
image_Icc
LE.le.trans

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
bddAbove πŸ“–mathematicalIsCompactBddAbove
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”bddBelow
instClosedIicTopologyOrderDual
OrderDual.instNonempty
bddAbove_image πŸ“–mathematicalIsCompact
ContinuousOn
BddAbove
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.image
β€”bddBelow_image
instClosedIicTopologyOrderDual
OrderDual.instNonempty
bddBelow πŸ“–mathematicalIsCompactBddBelow
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Set.eq_empty_or_nonempty
bddBelow_empty
exists_isLeast
bddBelow_image πŸ“–mathematicalIsCompact
ContinuousOn
BddBelow
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.image
β€”bddBelow
image_of_continuousOn
continuous_sInf πŸ“–mathematicalIsCompact
Continuous
instTopologicalSpaceProd
Function.HasUncurry.uncurry
Function.hasUncurryInduction
Function.hasUncurryBase
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.image
β€”continuous_sSup
instOrderTopologyOrderDual
continuous_sSup πŸ“–mathematicalIsCompact
Continuous
instTopologicalSpaceProd
Function.HasUncurry.uncurry
Function.hasUncurryInduction
Function.hasUncurryBase
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.image
β€”Set.eq_empty_or_nonempty
Set.image_empty
continuous_const
continuous_iff_continuousAt
exists_sSup_image_eq_and_ge
instClosedIciTopology
OrderTopology.to_orderClosedTopology
Continuous.continuousOn
Continuous.comp
Continuous.prodMk_right
ContinuousAt.eq_1
tendsto_order
Continuous.tendsto
Continuous.prodMk_left
Filter.Eventually.mono
LT.lt.trans_le
le_csSup
bddAbove_image
supSet_to_nonempty
Set.mem_image_of_mem
LE.le.trans_lt
generalized_tube_lemma
isCompact_singleton
IsOpen.preimage
isOpen_Iio
Filter.eventually_of_mem
IsOpen.mem_nhds
Set.singleton_subset_iff
sSup_lt_iff_of_continuous
Set.mk_mem_prod
exists_forall_le' πŸ“–mathematicalIsCompact
ContinuousOn
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLEβ€”Set.eq_empty_or_nonempty
NoMaxOrder.exists_gt
exists_isMinOn
exists_isGLB πŸ“–mathematicalIsCompact
Set.Nonempty
Set
Set.instMembership
IsGLB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”IsLeast.isGLB
exists_isLeast
exists_isGreatest πŸ“–mathematicalIsCompact
Set.Nonempty
IsGreatest
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”exists_isLeast
instClosedIicTopologyOrderDual
exists_isLUB πŸ“–mathematicalIsCompact
Set.Nonempty
Set
Set.instMembership
IsLUB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”exists_isGLB
instClosedIicTopologyOrderDual
exists_isLeast πŸ“–mathematicalIsCompact
Set.Nonempty
IsLeast
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Set.biInter_eq_iInter
elim_directed_family_closed
Set.Nonempty.to_subtype
isClosed_Iic
Set.not_nonempty_iff_eq_empty
Monotone.directed_ge
SemilatticeInf.instIsCodirectedOrder
Set.Iic_subset_Iic
le_rfl
Set.mem_iInterβ‚‚
exists_isLocalMax_mem_open πŸ“–mathematicalIsCompact
Set
Set.instHasSubset
ContinuousOn
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsOpen
IsLocalMaxβ€”exists_isMaxOn_mem_subset
IsMaxOn.isLocalMax
mem_nhds_iff
exists_isLocalMin_mem_open πŸ“–mathematicalIsCompact
Set
Set.instHasSubset
ContinuousOn
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsOpen
IsLocalMinβ€”exists_isMinOn_mem_subset
IsMinOn.isLocalMin
mem_nhds_iff
exists_isMaxOn πŸ“–mathematicalIsCompact
Set.Nonempty
ContinuousOn
Set
Set.instMembership
IsMaxOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”exists_isMinOn
instClosedIicTopologyOrderDual
exists_isMaxOn_mem_subset πŸ“–mathematicalIsCompact
ContinuousOn
Set
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsMaxOnβ€”exists_isMaxOn
by_contra
LT.lt.not_ge
exists_isMinOn πŸ“–mathematicalIsCompact
Set.Nonempty
ContinuousOn
Set
Set.instMembership
IsMinOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”exists_isLeast
image_of_continuousOn
Set.Nonempty.image
Set.forall_mem_image
Set.mem_image_of_mem
Set.image_id'
exists_isMinOn_mem_subset πŸ“–mathematicalIsCompact
ContinuousOn
Set
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsMinOnβ€”exists_isMinOn
by_contra
LT.lt.not_ge
exists_sInf_image_eq πŸ“–mathematicalIsCompact
Set.Nonempty
ContinuousOn
Set
Set.instMembership
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.image
β€”exists_sInf_image_eq_and_le
exists_sInf_image_eq_and_le πŸ“–mathematicalIsCompact
Set.Nonempty
ContinuousOn
Set
Set.instMembership
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.image
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
β€”sInf_mem
image_of_continuousOn
Set.Nonempty.image
Eq.trans_le
csInf_le
bddBelow
supSet_to_nonempty
Set.mem_image_of_mem
exists_sSup_image_eq πŸ“–mathematicalIsCompact
Set.Nonempty
ContinuousOn
Set
Set.instMembership
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.image
β€”exists_sInf_image_eq
instClosedIicTopologyOrderDual
exists_sSup_image_eq_and_ge πŸ“–mathematicalIsCompact
Set.Nonempty
ContinuousOn
Set
Set.instMembership
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.image
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
β€”exists_sInf_image_eq_and_le
instClosedIicTopologyOrderDual
isGLB_sInf πŸ“–mathematicalIsCompact
Set.Nonempty
IsGLB
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”isGLB_csInf
bddBelow
supSet_to_nonempty
isGreatest_sSup πŸ“–mathematicalIsCompact
Set.Nonempty
IsGreatest
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”isLeast_sInf
instClosedIicTopologyOrderDual
isLUB_sSup πŸ“–mathematicalIsCompact
Set.Nonempty
IsLUB
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”isGLB_sInf
instClosedIicTopologyOrderDual
isLeast_sInf πŸ“–mathematicalIsCompact
Set.Nonempty
IsLeast
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”sInf_mem
isGLB_sInf
lt_sInf_iff_of_continuous πŸ“–mathematicalIsCompact
Set.Nonempty
ContinuousOn
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set.image
β€”sSup_lt_iff_of_continuous
instClosedIciTopologyOrderDual
sInf_mem πŸ“–mathematicalIsCompact
Set.Nonempty
Set
Set.instMembership
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
β€”exists_isLeast
IsLeast.csInf_mem
sSup_lt_iff_of_continuous πŸ“–mathematicalIsCompact
Set.Nonempty
ContinuousOn
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.image
β€”LE.le.trans_lt
le_csSup
bddAbove_image
supSet_to_nonempty
Set.mem_image_of_mem
exists_isMaxOn
csSup_le
Set.Nonempty.image
sSup_mem πŸ“–mathematicalIsCompact
Set.Nonempty
Set
Set.instMembership
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
β€”sInf_mem
instClosedIicTopologyOrderDual

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
compact_Icc_space' πŸ“–mathematicalβ€”CompactIccSpace
topologicalSpace
preorder
β€”instCompactIccSpaceForall

(root)

Definitions

NameCategoryTheorems
CompactIccSpace πŸ“–CompData
6 mathmath: instCompactIccSpaceProd, ConditionallyCompleteLinearOrder.toCompactIccSpace, instCompactIccSpaceOrderDual, CompactIccSpace.mk', Pi.compact_Icc_space', CompactIccSpace.mk''

Theorems

NameKindAssumesProvesValidatesDepends On
atBot_atTop_le_cocompact πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instSup
Filter.atBot
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.atTop
Filter.cocompact
β€”sup_le
atBot_le_cocompact
instClosedIicTopology
atTop_le_cocompact
instClosedIciTopology
atBot_le_cocompact πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.atBot
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.cocompact
β€”Filter.mem_cocompact
Set.eq_empty_or_nonempty
Set.univ_subset_iff
Set.compl_univ_iff
Filter.univ_mem
IsCompact.exists_isLeast
NoMinOrder.exists_lt
Filter.mem_atBot_sets
SemilatticeInf.instIsCodirectedOrder
LT.lt.false
LE.le.trans_lt
LT.lt.trans_le
Set.not_notMem
atTop_le_cocompact πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.atTop
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.cocompact
β€”atBot_le_cocompact
OrderDual.noMinOrder
instClosedIicTopologyOrderDual
cocompact_eq_atBot πŸ“–mathematicalβ€”Filter.cocompact
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”LE.le.antisymm
cocompact_le_atBot
atBot_le_cocompact
cocompact_eq_atBot_atTop πŸ“–mathematicalβ€”Filter.cocompact
Filter
Filter.instSup
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.atTop
β€”LE.le.antisymm
cocompact_le_atBot_atTop
atBot_atTop_le_cocompact
cocompact_eq_atTop πŸ“–mathematicalβ€”Filter.cocompact
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”LE.le.antisymm
cocompact_le_atTop
atTop_le_cocompact
cocompact_le_atBot πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.cocompact
Filter.atBot
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Filter.mem_cocompact
isEmpty_or_nonempty
isCompact_empty
IsEmpty.false
Filter.mem_atBot_sets
SemilatticeInf.instIsCodirectedOrder
CompactIccSpace.isCompact_Icc
not_and_or
le_of_not_ge
le_top
cocompact_le_atBot_atTop πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.cocompact
Filter.instSup
Filter.atBot
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.atTop
β€”Filter.mem_cocompact
isEmpty_or_nonempty
isCompact_empty
IsEmpty.false
Filter.mem_atBot_sets
SemilatticeInf.instIsCodirectedOrder
Filter.mem_atTop_sets
SemilatticeSup.instIsDirectedOrder
CompactIccSpace.isCompact_Icc
not_and_or
le_of_not_ge
cocompact_le_atTop πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.cocompact
Filter.atTop
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”cocompact_le_atBot
instCompactIccSpaceOrderDual
compactSpace_Icc πŸ“–mathematicalβ€”CompactSpace
Set.Elem
Set.Icc
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”isCompact_iff_compactSpace
CompactIccSpace.isCompact_Icc
compactSpace_of_completeLinearOrder πŸ“–mathematicalβ€”CompactSpaceβ€”ConditionallyCompleteLinearOrder.toCompactIccSpace
eq_Icc_of_connected_compact πŸ“–mathematicalIsConnected
IsCompact
Set.Icc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”eq_Icc_csInf_csSup_of_connected_bdd_closed
IsCompact.bddBelow
instClosedIicTopology
OrderTopology.to_orderClosedTopology
supSet_to_nonempty
IsCompact.bddAbove
instClosedIciTopology
IsCompact.isClosed
OrderClosedTopology.to_t2Space
instCompactIccSpaceForall πŸ“–mathematicalCompactIccSpacePi.topologicalSpace
Pi.preorder
β€”isCompact_univ_pi
Set.pi_univ_Icc
CompactIccSpace.isCompact_Icc
instCompactIccSpaceOrderDual πŸ“–mathematicalβ€”CompactIccSpace
OrderDual
OrderDual.instTopologicalSpace
OrderDual.instPreorder
β€”Set.Icc_toDual
CompactIccSpace.isCompact_Icc
instCompactIccSpaceProd πŸ“–mathematicalβ€”CompactIccSpace
instTopologicalSpaceProd
Prod.instPreorder
β€”IsCompact.prod
CompactIccSpace.isCompact_Icc
Set.Icc_prod_eq
isCompact_Ico_iff πŸ“–mathematicalβ€”IsCompact
Set.Ico
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
β€”isClosed_Ico_iff
IsCompact.isClosed
OrderClosedTopology.to_t2Space
OrderTopology.to_orderClosedTopology
Set.Ico_eq_empty
isCompact_Ioc_iff πŸ“–mathematicalβ€”IsCompact
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
β€”isClosed_Ioc_iff
IsCompact.isClosed
OrderClosedTopology.to_t2Space
OrderTopology.to_orderClosedTopology
Set.Ioc_eq_empty
isCompact_Ioo_iff πŸ“–mathematicalβ€”IsCompact
Set.Ioo
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
β€”isClosed_Ioo_iff
IsCompact.isClosed
OrderClosedTopology.to_t2Space
OrderTopology.to_orderClosedTopology
Set.Ioo_eq_empty
isCompact_uIcc πŸ“–mathematicalβ€”IsCompact
Set.uIcc
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”CompactIccSpace.isCompact_Icc

---

← Back to Index