Documentation Verification Report

DenselyOrdered

📁 Source: Mathlib/Topology/Order/DenselyOrdered.lean

Statistics

MetricCount
DefinitionsDenselyOrdered
1
Theoremsexists_countable_dense_subset_no_bot_top, subsingleton_of_discreteTopology, Icc_mem_nhds_iff, Ico_mem_nhds_iff, Ico_subset_closure_interior, Ioc_mem_nhds_iff, Ioc_subset_closure_interior, closure_Ico, closure_Iio, closure_Iio', closure_Ioc, closure_Ioi, closure_Ioi', closure_Ioo, closure_interior_Icc, closure_uIoc, closure_uIoo, exists_countable_dense_no_bot_top, frontier_Icc, frontier_Ici, frontier_Ici', frontier_Ico, frontier_Iic, frontier_Iic', frontier_Iio, frontier_Iio', frontier_Ioc, frontier_Ioi, frontier_Ioi', frontier_Ioo, instNeBotNhdsWithinComplSetSingletonOfNontrivial, interior_Icc, interior_Ici, interior_Ici', interior_Ico, interior_Iic, interior_Iic', interior_Ioc, isClosed_Ico_iff, isClosed_Ioc_iff, isClosed_Ioo_iff, left_nhdsWithin_Ioc_neBot, left_nhdsWithin_Ioo_neBot, nhdsGT_neBot, nhdsGT_neBot_of_exists_gt, nhdsLT_neBot, nhdsLT_neBot_of_exists_lt, nhdsWithin_Iio_neBot, nhdsWithin_Iio_neBot', nhdsWithin_Iio_self_neBot', nhdsWithin_Ioi_neBot, nhdsWithin_Ioi_neBot', right_nhdsWithin_Ico_neBot, right_nhdsWithin_Ioo_neBot
54
Total55

Dense

Theorems

NameKindAssumesProvesValidatesDepends On
exists_countable_dense_subset_no_bot_top 📖mathematicalDenseSet
Set.instHasSubset
Set.Countable
Set.instMembership
exists_countable_dense_subset
HasSubset.Subset.trans
Set.instIsTransSubset
Set.diff_subset
Set.Countable.mono
diff_finite
T2Space.t1Space
OrderClosedTopology.to_t2Space
OrderTopology.to_orderClosedTopology
instNeBotNhdsWithinComplSetSingletonOfNontrivial
Set.Finite.union
Set.Subsingleton.finite
Set.subsingleton_isBot
Set.subsingleton_isTop

DenselyOrdered

Theorems

NameKindAssumesProvesValidatesDepends On
subsingleton_of_discreteTopology 📖IsClosed.closure_eq
isClosed_discrete
closure_Ioo
LT.lt.ne
le_antisymm

(root)

Definitions

NameCategoryTheorems
DenselyOrdered 📖CompData
57 mathmath: WithTop.denselyOrdered, instDenselyOrderedMultiplicative, FirstOrder.Language.realize_denselyOrdered_iff, Sum.denselyOrdered, Prod.Lex.instDenselyOrderedLex, OrderDual.denselyOrdered, NormedField.denselyOrdered_range_norm, Nonneg.instDenselyOrdered, denselyOrdered_units_iff, instDenselyOrderedProd, Valuation.Integers.not_denselyOrdered_of_isPrincipalIdealRing, Valuation.Integers.isPrincipalIdealRing_iff_not_denselyOrdered, StrictMono.denselyOrdered_range, instDenselyOrderedWithZeroOfNoMinOrder, Set.instDenselyOrdered, LinearOrderedAddCommGroup.discrete_iff_not_denselyOrdered, Sum.Lex.denselyOrdered_of_noMaxOrder, ENNReal.instDenselyOrdered, denselyOrdered_iff_of_orderIsoClass, instDenselyOrderedAdditive, Sum.Lex.denselyOrdered_of_noMinOrder, Irrational.instDenselyOrderedSubtypeReal, WithZero.denselyOrdered_set_iff_subsingleton, WithTop.denselyOrdered_iff, denselyOrdered_orderDual, denselyOrdered_iff_forall_not_covBy, denselyOrdered_multiplicative_iff, WithBot.denselyOrdered, LinearOrderedAddCommGroup.discrete_or_denselyOrdered, WithBot.denselyOrdered_iff, Subsingleton.instDenselyOrdered, denselyOrdered_additive_iff, Sum.denselyOrdered_iff, LocallyFiniteOrder.denselyOrdered_iff_subsingleton, WithTop.denselyOrdered_set_iff_subsingleton, FirstOrder.Language.denselyOrdered_of_dlo, PUnit.instDenselyOrdered, LinearOrderedAddCommGroup.isAddCyclic_iff_not_denselyOrdered, denselyOrdered_set_iff_subsingleton, Int.not_denselyOrdered, NormedField.denselyOrdered_range_nnnorm, denselyOrdered_iff_of_strictAnti, WithZero.denselyOrdered_iff, not_denselyOrdered_withZero_int, WithBot.denselyOrdered_set_iff_subsingleton, NNReal.instDenselyOrdered, LinearOrderedCommGroupWithZero.discrete_iff_not_denselyOrdered, LinearOrderedCommGroup.discrete_or_denselyOrdered, LinearOrderedCommGroup.discrete_iff_not_denselyOrdered, instDenselyOrderedEReal, denselyOrdered_iff_denselyOrdered_units_and_nontrivial_units, Set.Subsingleton.denselyOrdered, Valuation.Integers.isPrincipalIdealRing_iff_not_denselyOrdered_mrange, LinearOrderedCommGroupWithZero.discrete_or_denselyOrdered, LinearOrderedCommGroup.isCyclic_iff_not_denselyOrdered, instDenselyOrderedUnits, LinearOrderedSemiField.toDenselyOrdered

Theorems

NameKindAssumesProvesValidatesDepends On
Icc_mem_nhds_iff 📖mathematicalSet
Filter
Filter.instMembership
nhds
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.instMembership
Set.Ioo
interior_Icc
mem_interior_iff_mem_nhds
Ico_mem_nhds_iff 📖mathematicalSet
Filter
Filter.instMembership
nhds
Set.Ico
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.instMembership
Set.Ioo
interior_Ico
mem_interior_iff_mem_nhds
Ico_subset_closure_interior 📖mathematicalSet
Set.instHasSubset
Set.Ico
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
closure
interior
Set.Ioc_toDual
Ioc_subset_closure_interior
instOrderTopologyOrderDual
OrderDual.denselyOrdered
Ioc_mem_nhds_iff 📖mathematicalSet
Filter
Filter.instMembership
nhds
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.instMembership
Set.Ioo
interior_Ioc
mem_interior_iff_mem_nhds
Ioc_subset_closure_interior 📖mathematicalSet
Set.instHasSubset
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
closure
interior
eq_or_ne
Set.Ioc_eq_empty
interior_empty
IsClosed.closure_eq
T2Space.t1Space
OrderClosedTopology.to_t2Space
OrderTopology.to_orderClosedTopology
Set.instReflSubset
Set.Ioc_subset_Icc_self
closure_Ioo
closure_mono
interior_maximal
Set.Ioo_subset_Ioc_self
isOpen_Ioo
closure_Ico 📖mathematicalclosure
Set.Ico
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Icc
Set.Subset.antisymm
closure_minimal
Set.Ico_subset_Icc_self
isClosed_Icc
OrderTopology.to_orderClosedTopology
Set.Subset.trans
closure_Ioo
subset_refl
Set.instReflSubset
closure_mono
Set.Ioo_subset_Ico_self
closure_Iio 📖mathematicalclosure
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Iic
closure_Iio'
Set.nonempty_Iio
closure_Iio' 📖mathematicalSet.Nonempty
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
closure
Set.Iic
closure_Ioi'
instOrderTopologyOrderDual
OrderDual.denselyOrdered
closure_Ioc 📖mathematicalclosure
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Icc
Set.Subset.antisymm
closure_minimal
Set.Ioc_subset_Icc_self
isClosed_Icc
OrderTopology.to_orderClosedTopology
Set.Subset.trans
closure_Ioo
subset_refl
Set.instReflSubset
closure_mono
Set.Ioo_subset_Ioc_self
closure_Ioi 📖mathematicalclosure
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Ici
closure_Ioi'
Set.nonempty_Ioi
closure_Ioi' 📖mathematicalSet.Nonempty
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
closure
Set.Ici
Set.Subset.antisymm
closure_minimal
Set.Ioi_subset_Ici_self
isClosed_Ici
instClosedIciTopology
OrderTopology.to_orderClosedTopology
diff_subset_closure_iff
Set.Ici_diff_Ioi_same
Set.singleton_subset_iff
IsGLB.mem_closure
isGLB_Ioi
closure_Ioo 📖mathematicalclosure
Set.Ioo
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Icc
Set.Subset.antisymm
closure_minimal
Set.Ioo_subset_Icc_self
isClosed_Icc
OrderTopology.to_orderClosedTopology
Ne.lt_or_gt
diff_subset_closure_iff
Set.Icc_diff_Ioo_same
LT.lt.le
Set.nonempty_Ioo
IsGLB.mem_closure
isGLB_Ioo
IsLUB.mem_closure
isLUB_Ioo
Set.Icc_eq_empty_of_lt
Set.empty_subset
closure_interior_Icc 📖mathematicalclosure
interior
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
HasSubset.Subset.antisymm
Set.instAntisymmSubset
closure_minimal
interior_subset
isClosed_Icc
OrderTopology.to_orderClosedTopology
closure_Ioo
closure_mono
interior_maximal
Set.Ioo_subset_Icc_self
isOpen_Ioo
closure_uIoc 📖mathematicalclosure
Set.uIoc
Set.uIcc
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
closure_Ioc
closure_uIoo 📖mathematicalclosure
Set.uIoo
Set.uIcc
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
closure_Ioo
exists_countable_dense_no_bot_top 📖mathematicalSet.Countable
Dense
Set
Set.instMembership
Dense.exists_countable_dense_subset_no_bot_top
separableSpace_univ
dense_univ
frontier_Icc 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
frontier
Set.Icc
Set
Set.instInsert
Set.instSingletonSet
closure_Icc
OrderTopology.to_orderClosedTopology
interior_Icc
Set.Icc_diff_Ioo_same
frontier_Ici 📖mathematicalfrontier
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instSingletonSet
frontier_Ici'
Set.nonempty_Iio
frontier_Ici' 📖mathematicalSet.Nonempty
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
frontier
Set.Ici
Set
Set.instSingletonSet
closure_Ici
instClosedIciTopology
OrderTopology.to_orderClosedTopology
interior_Ici'
Set.Ici_diff_Ioi_same
frontier_Ico 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
frontier
Set.Ico
Set
Set.instInsert
Set.instSingletonSet
frontier.eq_1
closure_Ico
LT.lt.ne
interior_Ico
Set.Icc_diff_Ioo_same
LT.lt.le
frontier_Iic 📖mathematicalfrontier
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instSingletonSet
frontier_Iic'
Set.nonempty_Ioi
frontier_Iic' 📖mathematicalSet.Nonempty
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
frontier
Set.Iic
Set
Set.instSingletonSet
closure_Iic
instClosedIicTopology
OrderTopology.to_orderClosedTopology
interior_Iic'
Set.Iic_diff_Iio_same
frontier_Iio 📖mathematicalfrontier
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instSingletonSet
frontier_Iio'
Set.nonempty_Iio
frontier_Iio' 📖mathematicalSet.Nonempty
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
frontier
Set
Set.instSingletonSet
closure_Iio'
interior_Iio
instClosedIciTopology
OrderTopology.to_orderClosedTopology
Set.Iic_diff_Iio_same
frontier_Ioc 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
frontier
Set.Ioc
Set
Set.instInsert
Set.instSingletonSet
frontier.eq_1
closure_Ioc
LT.lt.ne
interior_Ioc
Set.Icc_diff_Ioo_same
LT.lt.le
frontier_Ioi 📖mathematicalfrontier
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instSingletonSet
frontier_Ioi'
Set.nonempty_Ioi
frontier_Ioi' 📖mathematicalSet.Nonempty
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
frontier
Set
Set.instSingletonSet
closure_Ioi'
interior_Ioi
instClosedIicTopology
OrderTopology.to_orderClosedTopology
Set.Ici_diff_Ioi_same
frontier_Ioo 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
frontier
Set.Ioo
Set
Set.instInsert
Set.instSingletonSet
frontier.eq_1
closure_Ioo
LT.lt.ne
interior_Ioo
OrderTopology.to_orderClosedTopology
Set.Icc_diff_Ioo_same
LT.lt.le
instNeBotNhdsWithinComplSetSingletonOfNontrivial 📖mathematicalFilter.NeBot
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Filter.forall_mem_nonempty_iff_neBot
mem_nhdsWithin
IsOpen.exists_Ioo_subset
exists_between
ne_or_eq
LT.lt.trans
LT.lt.ne
interior_Icc 📖mathematicalinterior
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Ioo
Set.Ici_inter_Iic
interior_inter
interior_Ici
interior_Iic
Set.Ioi_inter_Iio
interior_Ici 📖mathematicalinterior
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Ioi
interior_Ici'
Set.nonempty_Iio
interior_Ici' 📖mathematicalSet.Nonempty
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
interior
Set.Ici
Set.Ioi
Set.compl_Iio
interior_compl
closure_Iio'
Set.compl_Iic
interior_Ico 📖mathematicalinterior
Set.Ico
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Ioo
Set.Ici_inter_Iio
interior_inter
interior_Ici
interior_Iio
instClosedIciTopology
OrderTopology.to_orderClosedTopology
Set.Ioi_inter_Iio
interior_Iic 📖mathematicalinterior
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Iio
interior_Iic'
Set.nonempty_Ioi
interior_Iic' 📖mathematicalSet.Nonempty
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
interior
Set.Iic
Set.Iio
interior_Ici'
instOrderTopologyOrderDual
OrderDual.denselyOrdered
interior_Ioc 📖mathematicalinterior
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Ioo
Set.Ioi_inter_Iic
interior_inter
interior_Ioi
instClosedIicTopology
OrderTopology.to_orderClosedTopology
interior_Iic
Set.Ioi_inter_Iio
isClosed_Ico_iff 📖mathematicalIsClosed
Set.Ico
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
le_of_not_gt
IsClosed.closure_eq
Set.Icc_eq_Ico_same_iff
closure_Ico
LT.lt.ne
LT.lt.le
Set.Ico_eq_empty
T2Space.t1Space
OrderClosedTopology.to_t2Space
OrderTopology.to_orderClosedTopology
isClosed_Ioc_iff 📖mathematicalIsClosed
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
le_of_not_gt
IsClosed.closure_eq
Set.Icc_eq_Ioc_same_iff
closure_Ioc
LT.lt.ne
LT.lt.le
Set.Ioc_eq_empty
T2Space.t1Space
OrderClosedTopology.to_t2Space
OrderTopology.to_orderClosedTopology
isClosed_Ioo_iff 📖mathematicalIsClosed
Set.Ioo
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
le_of_not_gt
IsClosed.closure_eq
Set.Icc_eq_Ioo_same_iff
closure_Ioo
LT.lt.ne
LT.lt.le
Set.Ioo_eq_empty
T2Space.t1Space
OrderClosedTopology.to_t2Space
OrderTopology.to_orderClosedTopology
left_nhdsWithin_Ioc_neBot 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.NeBot
nhdsWithin
Set.Ioc
IsGLB.nhdsWithin_neBot
isGLB_Ioc
Set.nonempty_Ioc
left_nhdsWithin_Ioo_neBot 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.NeBot
nhdsWithin
Set.Ioo
IsGLB.nhdsWithin_neBot
isGLB_Ioo
Set.nonempty_Ioo
nhdsGT_neBot 📖mathematicalFilter.NeBot
nhdsWithin
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhdsWithin_Ioi_neBot
le_rfl
nhdsGT_neBot_of_exists_gt 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.NeBot
nhdsWithin
Set.Ioi
nhdsWithin_Ioi_neBot'
le_refl
nhdsLT_neBot 📖mathematicalFilter.NeBot
nhdsWithin
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhdsWithin_Iio_neBot
le_refl
nhdsLT_neBot_of_exists_lt 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.NeBot
nhdsWithin
Set.Iio
nhdsWithin_Iio_neBot'
le_refl
nhdsWithin_Iio_neBot 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.NeBot
nhdsWithin
Set.Iio
nhdsWithin_Iio_neBot'
Set.nonempty_Iio
nhdsWithin_Iio_neBot' 📖mathematicalSet.Nonempty
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
Filter.NeBot
nhdsWithin
mem_closure_iff_nhdsWithin_neBot
closure_Iio'
nhdsWithin_Iio_self_neBot' 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.NeBot
nhdsWithin
Set.Iio
nhdsLT_neBot_of_exists_lt
nhdsWithin_Ioi_neBot 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.NeBot
nhdsWithin
Set.Ioi
nhdsWithin_Ioi_neBot'
Set.nonempty_Ioi
nhdsWithin_Ioi_neBot' 📖mathematicalSet.Nonempty
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
Filter.NeBot
nhdsWithin
mem_closure_iff_nhdsWithin_neBot
closure_Ioi'
right_nhdsWithin_Ico_neBot 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.NeBot
nhdsWithin
Set.Ico
IsLUB.nhdsWithin_neBot
isLUB_Ico
Set.nonempty_Ico
right_nhdsWithin_Ioo_neBot 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.NeBot
nhdsWithin
Set.Ioo
IsLUB.nhdsWithin_neBot
isLUB_Ioo
Set.nonempty_Ioo

---

← Back to Index